Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Построение эмпирической функции распределения




Статистическая функция распределения (эмпирическая) - это частота события, состоящего в том, что случайная величина Х в процессе изменения примет значение меньше некоторого фиксированного х

 

F*(х) = Р* = P* (X<x)

 

Статистическая функция распределения (эмпирическая) является разрывной функцией, точки разрыва совпадают с наблюдаемыми значениями случайной величины, а скачок в каждой точке разрыва равен частоте появления наблюдаемого значения в данной серии наблюдения. Сумма скачков всегда равна 1.

 

 9

Σ Pi* = 1

i=1

1) ∞ < х ≤ 28

F* (x) =P* (X<28) =0

2) 28<x≤29

F* (x) =P* (X<29) =P* (X=28) =1/130

3) 29<x≤30

F* (x) =P* (X=28) + P* (X=29) =1/130+3/130=4/130

4) 30<x≤31

F* (x) =P* (X<31) = P* (X=28) + P* (X=29) P* (X=30) +1/130+3/130+18/130=22/130

5) 31<x≤32

F* (x) =P* (X<32) = P* (X=28) + +P* (X=29) +P* (X=30) +P* (X=31) =1/130+3/130+18/130+29/130=51/130

6) 32<x≤33

F* (x) =P* (X<33) = P* (X=28) +P* (X=29) +P* (X=30) +P* (X=31)

P* (X=32) =1/130+3/130+18/130+29/130+32/130=83/130

7) 33<x≤34

F* (x) =P* (X<34) = P* (X=28) +P* (X=29) +P* (X=30) +P* (X=31) +

+P* (X=32) +P* (X=33)

 =1/130+3/130+18/130+29/130+32/130+24/130=107/130

8) 34<x≤35

F* (x) =P* (X<35) = P* (X=28) +P* (X=29) +P* (X=30) +P* (X=31) +

+P* (X=32) +P* (X=33) P* (X=34) =

=1/130+3/130+18/130+29/130+32/130+24/130+18/130=125/130

9) 35<x≤36

F* (x) =P* (X<36) = P* (X=28) +P* (X=29) +P* (X=30) +P* (X=31) +

+P* (X=32) +P* (X=33) P* (X=34) + P* (X=35)

=1/130+3/130+18/130+29/130+32/130+24/130+18/130+4/130=129/130

10) x>36

F* (x) =1


 

                0, -∞<х≤28

                1/130, -∞<х≤29

                4/130, 29<х≤30

         22/130, 30<х≤31

F*(x)      51/130, 31<х≤32

              83/130, 32<х≤33

              107/130, 33<х≤34

              125/130, 34<х≤35

              129/130, 35<х≤36

              1, х>36

        

Статистическая функция распределения является разрывной функцией и её графиком является ступенчатая линия.

Построим систему координат:

на оси Ох=хi

на оси Оу=F* (x)


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


F*

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

129/130

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

125/130

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

107/130

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

83/130

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

51/130

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22/130

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4/130

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1/130

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

xi

 

28

29

30

31

32

33

34

35

36

 

 

 

 


Статистические оценки параметров распределения

 

Одной из задач статистики является оценка параметров распределения случайной величины Х по данным выборки.

Оценка параметра зависит от наблюдаемых значений и от числа наблюдений. Для того чтобы полученную оценку можно было бы использовать на практике она должна удовлетворять следующим условиям:

1) оценка должна быть не смещённой оценкой параметра, т.е. математическое ожидание должно быть равно оцениваемому параметру. Если это условие не выполняется, то оценку называют смещённой оценкой оцениваемого параметра;

2) оценка должна быть состоятельной оценкой оцениваемого параметра;

3) Оценка должна быть эффективной оценкой оцениваемого параметра;

Из всех различных оценок выбираем ту которая имеет наименьшую дисперсию она и называется эффективной если её дисперсия является минимальной из всех получившихся дисперсий.

Таким образом, чтобы полученная опытным путем оценка оцениваемого параметра была пригодной она должна быть несмещённой состоятельной и эффективной.

Пусть изучается дискретная генеральная совокупность объема N количественного признака Х.

Генеральной средней совокупностью называют среднее

 

арифметическое наблюдаемых значений.

 

Если же значение признака х1, х2,……. хк имеют соответственно частоты N1,N2……. Nk, то средняя генеральная вычисляется по формуле:

 

 


Пусть для изучения генеральной совокупности относительно некоторого количественного признака Х произведена выборка объема n.

 

Выборочной средней называют среднее арифметическое наблюдаемых значений в данной выборке.

   

 

Если же значение признака х1, х2,…. хk имеет соответственно частоты

 

n1,n2,…. nk, то выборочная средняя определяется по формуле:

 

 

xi 28 29 30 32 32 33 34 35 36
ni 1 3 18 29 32 24 18 4 1

 

 28×1+29×3+30×18+31×29+32×32+33×24+34×18+35×4+36×1

хв =

130

= 4158 = 31,98

 130

Выборочной дисперсией называется среднее арифметическое квадратов отклонений наблюдаемых значений от выборочной средней. Вычисляется выборочная дисперсия по формуле:

 

 

Если же значение признака х1, х2…. x k имеет соответственно частоты n1,n2…. nk, то выборочная дисперсия вычисляется по формуле:

 

 


     (28-31,98) 2×1+ (29-31,98) 2×3+ (30-31,98) 2×18+ (31-31,98) 2×29+

Dв=    + (32-31,98) 2×32+ (33-31,98) 2×24+ (34-31,98) 2×18+ (35-31,98) 2×

      ×4+ (36-31,98) 2×1 =

130

= 291,972 = 2,24

130

Среднее выборочное квадратичное отклонение - это величина численно равная квадратному корню из выборочной дисперсии.

 

 


__

σв = √ 2,24 = 1,5

Нормальный закон распределения случайной величины


Говорят, что случайная величина распределена по нормальному закону если плотность распределения этой случайной величины выражается формулой:

 

 

 


Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...