Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Условия возникновения и существования незатухающих колебаний.




Генераторами называются электронные схемы, формирующие переменное напря­жение требуемой формы. Сначала в этой главе будут рассмотрены генераторы сину­соидальных сигналов, а затем генераторы сигналов специальной формы, в частности генераторы треугольного и прямоугольно­го напряжения.

Обычно генератор представляет собой усилитель, охваченной петлёй обратной связи.

Введём следующие обозначения:

-коэффициент усиления без цепи обратной связи;

-коэффициент передачи цепи обратной связи;

α-фазовый сдвиг, вносимый усилителем;

β- фазовый сдвиг, вносимый цепью обратной связи.

Условием возникновения режима генерации для усилителя охваченный петлёй обратной связи, является равенство выходного напряжения усилителя. Коэффициент петлевого усилителя, таким образом, должен равняться:

= * =1 (2.1)

Из этого соотношения следует два условия:

α + β = 0; 2л,... (2.2)

Соотношение (2.1) называется условием баланса амплитуд. Оно заключается в том, что схема генератора может возбуждаться только тогда, когда усилитель компенси­рует потери в схеме обратной связи. Соот­ношение (2.2) называется условием баланса фаз. Оно означает, что колебания в замк­нутой системе могут возбуждаться только тогда, когда фаза выходного напряжения схемы обратной связи и фаза входного на­пряжения усилителя совпадают, т.е. обратная связь является положительной.

Генераторы синусоидального напряжения отличаются тем, что у них цепь обратной связи имеет резонансные свойства. Поэтому условия возникновения колебаний выполняются толь­ко на одной частоте, а не в полосе частот, как у генераторов импульсов. В качестве резонаторов, обеспечивающих получение резонансных свойств, используют LC-контуры, RC-цепи опре­деленного вида, кварцевые резонаторы, электромеханические колебательные системы и др.

 

 

Режимы самовозбуждения.

Генераторы синусоидального напряжения отличаются тем, что у них цепь обратной связи имеет резонансные свойства. Поэтому условия возникновения колебаний выполняются толь­ко на одной частоте, а не в полосе частот, как у генераторов импульсов. В качестве резонаторов, обеспечивающих получение резонансных свойств, используют LC-контуры, RC-цепи опре­деленного вида, кварцевые резонаторы, электромеханические колебательные системы и др.

Различают «мягкий» и «жесткий» режимы возбуждения генераторов. При мягком режиме петлевое усиление больше единицы (\g\>1) в момент включения напряжения питания. Тогда любые шумы или возмущения в системе, вызванные случайными факторами, усиливаются и через цепь обратной связи подаются на вход усилителя в фазе, совпадающей с фазой входного сигнала, причем величина этого дополнительного сигнала больше того возмущения, которое вызвало его появле­ние. Соответственно увеличится выходное напряжение, что приведет к дальнейшему увеличению входного сигнала и т. д. В итоге случайно возникшее возмущение приведет к непрерыв­ному нарастанию выходного сигнала, которое достигло бы бесконечного большого значения, если бы это было возможно. Однако при определенном уровне сигнала начинают проявлять­ся нелинейные свойства электронного усилителя. Коэффициент усиления начинает уменьшаться с увеличением значения сигнала в системе. При выполнении условия g = 1 амплитуда автоколе­баний стабилизируется и автогенератор начинает давать колеба­ния, имеющие постоянную амплитуду.

Рис. 4.2. «Жесткий» режим возникновения автоколебаний.

Жесткий режим возбуждения отличается от рассмотренного тем, что при нем для возникновения автоколебаний необходимо приложить к устройству дополнитель­ный внешний сигнал, не меньший определенного значения. Это связано с осо­бенностями нелинейности усилительного устройства. В момент включения на­пряжения питания и отсут­ствия автоколебаний g < 1. Поэтому они сами собой возникнуть не могут. Коэффициент усиления зависит от амплитуды выходного сигнала. Поэтому если на вход усилителя подать дополнительный электрический сигнал, то при опре­деленном его значении начнет выполняться условие g > 1. При этом возникнут автоколебания, амплитуда которых будет нарастать и примет стационарное значение при g = 1. Процесс возникновения колебаний поясняет рис. 4.2. При приложении входного сигнала, большего UвхА, например UBXl, он усилива­ется до напряжения, определяемого точкой 1, и снова подается на вход. Входное напряжение станет равным UBx2. Выходное напряжение будет определяться точками 26 и т. д. Процесс увеличения амплитуды прекратится при достижении выходным сигналом значения Uуст (точка 6, в которой g=1).Если каким-либо путем амплитуду выходного сигнала уменьшить до значения, меньшего UвхА, то автоколебания прекратятся.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...