Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

ЛЕКЦИЯ 2. Постоянный ток. Электрическим током называют упорядоченное движение зарядов, благодаря чему происходит их перенос из одной области пространства в другую. Такое упорядоченное движение может происходить во многих веществах: твердые тела, жидкости,




ЛЕКЦИЯ 2. Постоянный ток.

Электрическим током называют упорядоченное движение зарядов, благодаря чему происходит их перенос из одной области пространства в другую. Такое упорядоченное движение может происходить во многих веществах: твердые тела, жидкости, газы или даже вакуум. Например, если мы возьмем аккумулятор, полюса соединим проводниками, то начнется движение зарядов от плюса к минусу. Это является примером тока в металлических телах. А теперь давайте представим соль, растворенную в воде. В эту воду опускаем два электрода, подключенных к электричеству. В результате прохождения тока к одному электроду будут стремиться положительные ионы раствора, а к другому - отрицательные ионы. Это является примером тока в электролитах. Примером тока в газовой среде является молния. В результате создания двух мощных полей происходит пробой диэлектрической среды. Это, в свою очередь, влечет за собой появление искры. Возьмем большое заряженное тело и начнем передвигать его в пространстве. Исходя из определения электрического тока, имеется и заряд, и его направленное движение. Это значит, что намеренное перемещение объемного заряда также является током. Он называется конвекционным током.

А теперь давайте рассмотрим проводник, который нагревают. Что с ним происходит? Электроны начинают двигаться. И чем выше температура проводника, тем быстрее они двигаются. Но давайте ответим, какое это движение? Хаотическое! Основной отличительной чертой тока от любого другого движения является то, что все заряды должны двигаться направленно. Поэтому движение заряженных частиц, вызванное увеличением температуры, нельзя назвать током. Также стоит отметить, что при любом перемещении нейтрально заряженного тела, такое движение также нельзя назвать током, поскольку не происходит перемещение заряда в пространстве.

Следует отметить, что протекании тока, при упорядоченном движении все положительные частицы двигаются от положительного полюса к отрицательному. Отрицательные же частицы наоборот. Однако, во всем мире, за направление тока принимают то направление, в котором двигаются положительные частицы. То есть принято считать, что ток двигается от положительного полюса к отрицательному. Данное правило противоречит движение тока в металлах, поскольку в этих веществах заряд несут именно электроны, а двигаться они должны от плюса к минусу. Данное направление исторически выбрано А. Ампером в начале 19 века.

Рассмотрим основные виды действия электрического тока.

1. Тепловое. Как нам известно, все тела, которые двигаются, обладают кинетической энергией. А чем больше данная энергия, тем больше температура тела. В данном случае движение заряженных частиц приводит к нагреванию проводника. Именно благодаря такому свойству тока мы используем утюг, фен, нагревательные печи и многие другие приборы.

2. Магнитное. Во время прохождения электрического тока вокруг тела начинает появляться магнитное поле. Это заметил Ампер, проводивший опыты с током рядом с компасом. Во время прохождения тока стрелка компаса начинала двигаться. Именно на основе данного свойства изготавливают электромагниты.

3. Химическое. В то время, когда ток проходит через произвольный электролит, происходит разделение его на положительные и отрицательные ионы. Этот принцип лежит в основе покрытия некоторых деталей или украшений медью, серебром или другими элементами.

Сила тока. Напряжение. Закон Ома.

Физическая величина, что характеризует величину заряда, прошедшего за определенное время называют силой тока:  . Сила тока измеряется в Амперах (А). Плотность тока показывает насколько много зарядов прошло через некоторое сечение за единицу времени:  . Единица измерения – 1 А/м2.

Ток передвигается со скоростью равной скорости света, то есть 3*108 м/с.

Чтобы заряды перемещались, необходимо приложить силу в некотором заданном направлении. Чтобы заряд перемещался по проводнику, в нем должно быть поле, имеющее силу для передвижения. Поле должно постоянно работать и постоянно вырабатывать ток.  Для получения такого поля необходимо создать разность потенциалов на концах проводника, по которому бежит ток. Это можно сделать только в том случае, если к цепи подключить источник тока, который будет создавать разность потенциалов. В виде источника тока можно использовать батарейки, генераторы, трансформаторы и прочее оборудование. Источник тока имеет возможность постоянно восполнять запасы электрического поля. Источник тока характеризуется такой физической величиной, как ЭДС, это сила, которая позволяет передвигать заряды по цепи, образуя ток. Для определения напряжения на участке цепи можно использовать следующую формулу:  , где d – расстояние между двумя точками (принято считать длину всего проводника, подключенного к источнику тока).

Вольтметр – это прибор для количественного измерения напряжения. Данный прибор следует подключать параллельно к тому участку, где происходит измерение физической величины. Амперметр – прибор для измерения и количественного определения величины силы тока. Прибор подключается последовательно к рассматриваемому участку. Рассмотрим некоторый участок цепи. Если к данному участку подключить вольтметр и амперметр, то можно наблюдать зависимость тока от изменения напряжения. При изменении напряжения на амперметре мы можем заметить и изменение силы тока. Произведя несколько аналогичных опытов, получим зависимость одной величины от другой. Эта зависимость называется вольт-амперная характеристика проводника, нагрузки или потребителя.

Данная зависимость называется законом Ома:  , где R – вольт-амперная характеристика потребителя, называемая сопротивлением. Закон Ома говорит о том, что сила тока зависит от напряжения и имеет обратную пропорциональность относительно сопротивления цепи; единица измерения - [Ом]. Для металлов данная зависимость является линейной. Именно поэтому все части цепи, которые выполнены из металла, называются линейными.

Сопротивление является аналогом силы трения в динамике. Данная физическая величина препятствует передвижению тока по проводнику. Хотелось бы отметить, что ток стремится к меньшему сопротивлению. Именно поэтому из двух участков цепи ток выберет тот, где сопротивление меньше. Данная величина зависит от типа вещества, из которого изготовлен проводник, от его длины, а также площади поперечного сечения:  , где r - удельное сопротивление проводника, l – длина проводника, S – площадь сечения проводника.

Удельное сопротивление для любого типа элемента можно найти в специальных таблицах.

Для того, чтобы передвинуть некоторый заряд на неопределенное расстояние, следует приложить сторонние силы. Такие сторонние силы можно получить благодаря источнику тока. Любой источник тока характеризуется ЭДС. Данная величина показывает, какая сторонняя работа была приложена к заряду для его передвижения на некоторое расстояние:  , где

e - электродвижущая сила,

АСТ  - работа сторонних сил по перемещению зарядов внутри элемента от одного полюса к другому,

q – перемещаемый заряд.

ЭДС имеет природу, подобную напряжению. Поэтому данная физическая величина также измеряется в вольтах (В). ЭДС может быть различной в зависимости типа энергии, которая преобразуется:

ü Механическая. Данное ЭДС возникает в результате механических движений частей источника тока. То есть механическая энергия, возникающая во время трения, преобразуется в электрическую энергию. Примером является электрофорная машина.

ü Термальная. Примером появления данного ЭДС являются термоэлементы. Сплавы подвергаются нагреву, в результате чего тепловая энергия переходит в электрическую.

ü Фотоэлектрическая. Это преобразование энергии фотонов в электрическую энергию. Примером являются солнечные панели.

ü Химическая. Примером являются аккумуляторы и гальваноэлементы. Энергия, полученная в результате химических реакций, преобразуется в электрическую энергию.

    Чтобы получить постоянную разность потенциалов, в цепь включают источник тока. В источнике тока имеются специальные преобразователи различных видов энергии в электрическую. Это значит, что в источнике тока так же имеется некоторая цепь с собственным сопротивлением. Поэтому в случае, когда рассматривается вся цепь, закон Ома видоизменяется. Закон Ома для полной цепи выглядит следующим образом:

 , где

e - ЭДС источника напряжения,

I – сила тока в цепи,

R – сопротивление всех внешних элементов цепи,

r – внутреннее сопротивление источника напряжения.

В данном случае необходимо учитывать то сопротивление, которое имеется непосредственно в источнике тока. В том случае, когда клеммы на источнике тока замыкаются без других участков цепи, происходит короткое замыкание. Во время короткого замыкания происходит значительное нагревание источника тока нулевого сопротивления цепи. Чаще всего это приводит к выходу из строя источника тока.

При изучении постоянного тока, который обеспечивается благодаря внешнему источнику, вводится понятие идеального источника тока. У такого источника внутреннее сопротивление стремится к нулю, поэтому напряжение равно ЭДС. Чтобы определить ЭДС источника, к нему напрямую следует подключить вольтметр.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...