Анализ существующих конструкций сцепления
Содержание
Задание 1. Назначение и требования к сцеплению 2. Анализ существующих конструкций сцепления 3. Предлагаемая конструкция 4. Расчет сцепления 4.1 Выбор основных параметров сцепления 4.2 Расчет сцепления на износ 4.3 Расчет деталей 4.3.1 Нажимной диск 4.3.2 Цилиндрическая нажимная пружина 4.4 Расчет вала сцепления 4.5 Ступица ведомого диска 4.6 Подшипник выключения сцепления 4.7 Расчет привода фрикционного сцепления 5. Техническое обслуживание спроектированной конструкции Библиографический список Назначение и требования к сцеплению
Сцепление представляет собой узел трансмиссии, передающий во включенном состоянии крутящий момент и имеющий устройство для кратковременного его выключения. Сцепление предназначено для плавного трогания автомобиля и кратковременного разъединения двигателя и трансмиссии при переключении передач и предотвращения воздействия на трансмиссию больших динамических нагрузок, возникающих на переходных режимах. С учетом назначения, места в схеме передачи энергии трансмиссией автомобиля, к сцеплению предъявляются следующие специфические требования: 1.Надежная передача крутящего момента от двигателя к коробке передач. Обеспечивается необходимым запасом момента сцепления (момента трения) на всех режимах работы двигателя, сохранением нажимного усилия в необходимых пределах в процессе эксплуатации. 2.Полнота включения, т. е. отсутствие пробуксовывания ведущих и ведомых деталей сцепления, обеспечивающая надежную передачу крутящего момента двигателя. Достигается в эксплуатации наличием зазора в механизме выключения и недопущением попадания смазочного материала на трущиеся поверхности.
3.Полнота («чистота») выключения, обеспечивающая полное разъединение двигателя и трансмиссии. Достигается заданной величиной рабочего хода подшипника выключения и соответственно рабочим ходом педали сцепления. 4.Плавное включение, обеспечивающее заданную интенсивность трогания с места автомобиля или после включения передачи. Достигается конструкцией сцепления, его привода и темпом отпускания педали водителем. 5.Предохранение трансмиссии и двигателя от перегрузок и динамических нагрузок. Достигается оптимальной величиной запаса момента сцепления, установкой в нем гасителя крутильных колебаний, специальными мероприятиями в конструкции ведомых дисков. 6.Малый момент инерции ведомых деталей сцепления, снижающий ударные нагрузки на зубья колес при переключении передач. 7.0беспечение нормально теплового режима работы и высокой износостойкости за счет интенсивного отвода тепла от поверхностей трения. 8.Хорошая уравновешенность с целью исключения «биений» и соответственно динамических нагрузок при работе сцепления. 9.Легкость и удобство управления, возможность автоматизации процессов включения и выключения. К сцеплениям предъявляют и общие конструкционные требования, такие как: простота устройства, малая трудоемкость и удобство технического обслуживания; минимальные размеры и масса; технологичность и низкая стоимость производства; ремонтопригодность; низкий уровень шума.
Анализ существующих конструкций сцепления В современном автомотостроении применяются фрикционные, гидравлические и электромагнитные типы сцепления. Фрикционные сцепления бывают: полуцентробежные, с созданием нажимного усилия пружинами, с автоматической регулировкой нажимного усилия, с созданием нажимного усилия электромагнитными силами (Рис. 1) Фрикционные сцепления получили основное распространение.
Данный тип сцеплений неприхотлив в эксплуатации, конструктивно прост, имеет малые трудовые затраты в изготовлении и эксплуатации. Конструкция данного типа сцепления обеспечивает выполнение всех требований, предъявляемых к автомобильным транспортным средствам. Передача крутящего момента осуществляется за счет сил трения нажимным, фрикционным и опорным дисками. Обеспечение величины силы трения осуществляется нажимными пружинами. Сцепление оборудовано узлами гашения крутящих колебаний. Выключение и плавное включение сцепления осуществляется системой рычагов и упорным подшипником.
Рис 1. Фрикционное сцепление с созданием нажимного усилия электромагнитными силами: 1 – кожух; 2 – нажимной диск; 3 – якорь электромагнита; 4 – диск; 5 – контактные кольца; 6 – муфта блокировки сцепления; 7 – щетки; 8 – электромагнит; 9 – пружины. Гидравлическое сцепление (Рис. 2) в основе нашло применение в транспортной технике, работающей в трудных дорожных условиях, где требуется мягкая передача крутящего момента от двигателя к трансмиссии. Конструктивно данное сцепление сложное, критично к эксплуатационному обслуживанию, требуется постоянный контроль за состоянием деталей сцепления и рабочей гидрожидкости. Конструкция сцепления представляет собой гидронасос и турбину. Передача крутящего момента и плавность работы происходит за счет движения рабочей жидкости между насосом и турбиной. Выключение сцепления производится за счет удаления рабочей жидкости из сцепления.
Рис 2. Гидромуфта: 1 – насосное колесо; 2 – турбинное колесо; 3 – клапаны опорожнения; 4 – клапаны заполнения; 5 – радиатор; 6 – предохранительный клапан; 7 – бак; 8 – насос питания.
Электромагнитное сцепление (Рис. 3) предназначено для применения в автоматических системах трансмиссии. Конструктивно данный тип сцеплений представляет собой электромагнит с ферромагнитным рабочим веществом. Включение сцепления производится подачей в катушки электромагнита рабочего напряжения. Основной недостаток данного типа сцепления заключается в том, что катушка сцепления во все время работы находится под напряжением, что сокращает срок эксплуатации, жесткое включение сцепления. Данный тип сцепления применяется в ограниченных видах транспортной техники.
Рис 3. Электромагнитное порошковое сцепление 1 – маховик; 2,3,6,7 – магнитопровод; 4 – обмотка возбуждения; 5 – вывод; 8 – диски из немагнитного материала.
Предлагаемая конструкция
Выбор конструктивной схемы включения принятие решений по следующим вопросам: тип сцепления и привода, число ведомых дисков, тип и число нажимных пружин, размеры фрикционных накладок, значение коэффициента запаса сцепления. В современных автомобилях наибольшее распространение получили сухие фрикционные одно- и духдисковые сцепления с неавтоматическим механическим приводом. Другие типы сцепления применяются, в основном, на специальных автомобилях. Механический привод применяется при размещении педали сцепления вблизи от сцепления. Гидравлический привод имеет более высокий КПД, обеспечивающий лучшую герметичность кабины (кузова), позволяет использовать подвесную педаль и проще по конструкции при значительном удалении педали от сцепления и опрокидывающейся кабине. На основании вышеизложенного, а также достаточно высокого КПД соответствия всем требованиям к сцеплению выбираю на проектируемый автомобиль сухое фрикционное однодисковое сцепление с гидравлическим приводом. Диафрагменные (тарельчатые) пружины получили широкое применение в сцеплениях легковых и изготовленных на их шасси грузовых автомобилях. Обычно применяют пружину, хотя известны конструкции с двумя пружинами (грузовые автомобили). На грузовых автомобилях, как правило, используются сцепления с периферийным расположением цилиндрических витых пружин, например сцепление автомобиля ГАЗ-53. На основании вышеизложенного выбираю для проектируемого сцепления 9 цилиндрических витых пружин с их периферийным расположением. Отечественные легковые и грузовые автомобили грузоподъемностью до 5т имеют однодисковые сцепления. Автомобили грузоподъемностью более 7т (МАЗ-500А, КАМАЗ, ЗИЛ-133Г), а также автомобили повышенной проходимости (УРАЛ-375, МАЗ-509) имеют двухдисковое сцепление. Следовательно, для проектируемого автомобиля выбираю однодисковую конструкцию сцепления.
Значение коэффициента выбирают в зависимости от типа автомобиля: для легковых автомобилей 1.3-1.75; грузовых одиночных 1.6-2.2.; грузовых работающих с прицепом 2.0-2.5; автомобилей повышенной проходимости, работающих с прицепом 2.5-3.0. Большие значения принимаются для сцеплений, работающих в тяжелых условиях (автобусы городского типа, автомобили-самосвалы, автомобили повышенной проходимости, автомобили с малой удельной мощностью). Для проектируемого сцепления выбираю b = 1.8.
Расчет сцепления
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|