Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Матрица линейного преобразования




Решение матричных уравнений

Матричные уравнения могут иметь вид:

АХ = В, ХА = В, АХВ = С,

где А,В,С — задаваемые матрицы, Х- искомая матрица.

Матричные уравнения решаются с помощью умножения уравнения на обратные матрицы.

Например, чтобы найти матрицу из уравнения , необходимо умножить это уравнение на слева.

Тогда:

Следовательно, чтобы найти решение уравнения , нужно найти обратную матрицу и умножить ее на матрицу , стоящие в правой части уравнения.

Аналогично решаются другие уравнения.

Пример 2

Решить уравнение АХ = В, если

Решение: Так как обратная матрица равняется (см. пример 1)

 

 

№22

Линейные пространства


Определение линейного пространства

 

Пусть V - непустое множество (его элементы будем называть векторами и обозначать ...), в котором установлены правила:

1) любым двум элементам соответствует третий элемент называемый суммой элементов (внутренняя операция);

2) каждому и каждому отвечает определенный элемент (внешняя операция).

Множество V называется действительным линейным (векторным) пространством, если выполняются аксиомы:

I.

II.

III. (нулевой элемент, такой, что ).

IV. (элемент, противоположный элементу ), такой, что

V.

VI.

VII.

VIII.
Аналогично определяется комплексное линейное пространство (вместо R рассматривается C).


Подпространство линейного пространства

 

Множество называется подпространством линейного пространства V, если:

1)

2)

 

 

№23

Система векторов линейного пространства L образует базис в L если эта система векторов упорядочена, линейно независима и любой вектор из L линейно выражается через векторы системы.

Иными словами, линейно независимая упорядоченная система векторов e 1,..., e n
образует базис в L если любой вектор x из L может быть представлен в виде

x = С1· e 12 ·e 2+...+С n · e n.

 

Можно определить базис иначе.

Любая упорядоченная линейно независимая система e 1,..., e n векторов n- мерного линейного пространства Ln образует базис этого пространства.

Поскольку n, размерность пространства Ln — максимальное количество линейно независимых векторов пространства, то система векторов x, e 1,..., e n линейно зависима и, следовательно, вектор x линейно выражается через векторы e 1,..., e n:

x = x 1· e 1+ x 2 ·e 2+...+ xn · e n.

Такое разложение вектора по базису единственно.

 

Теорема 1. (О числе векторов в линейно независимых и порождающих системах векторов.) Число векторов в любой линейно независимой системе векторов не превосходит числа векторов в любой порождающей системе векторов этого же векторного пространства.

Доказательство. Пусть произвольная линейно независимая система векторов, - произвольная порождающая система. Допустим, что .

Мы можем считать, что все векторы порождающей системы ненулевые, т.к. нулевые векторы можно удалить из системы и оставшаяся система векторов, очевидно, остается порождающей.

Т.к. порождающая система, то она представляет любой вектор пространства, в том числе и вектор . Присоединим его к этой системе. Получаем линейно зависимую и порождающую систему векторов: . Тогда найдется вектор этой системы, который линейно выражается через предыдущие векторы этой системы и его, в силу леммы, можно удалить из системы, причем оставшаяся система векторов будет по-прежнему порождающей.

Перенумеруем оставшуюся систему векторов: . Т.к. эта система порождающая, то она представляет вектор и, присоединяя его к этой системе, опять получаем линейно зависимую и порождающую систему: .

Далее все повторяется. Найдется вектор в этой системе, который линейно выражается через предыдущие, причем это не может быть вектор , т.к. исходная система линейно независимая и вектор не выражается линейно через вектор . Значит, это может быть только один из векторов . Удаляя его из системы , получаем, после перенумерования, систему , которая будет порождающей системой. Продолжая этот процесс, через шагов получим порождающую систему векторов: , где , т.к. по нашему предположению . Значит, эта система, как порождающая, представляет и вектор , что противоречит условию линейной независимости системы .

Теорема 1 доказана.

Теорема 2. (О количестве векторов в базисе.) В любом базисе векторного пространства содержится одно и тоже число векторов.

Доказательство. Пусть и – два произвольных базиса векторного пространства. Любой базис является линейно независимой и порождающей системой векторов.

Т.к. первая система линейно независимая, а вторая – порождающая, то, по теореме 1, .

Аналогично, вторая система линейно независимая, а первая – порождающая, то . Отсюда следует, что , ч.т.д.

Теорема 2 доказана.

Данная теорема позволяет ввести следующее определение.

Определение. Размерностью векторного пространства V над полем K называется число векторов в его базисе.

Обозначение: или .

 

№24

Координа́ты ве́ктора ― коэффициенты единственно возможной линейной комбинации базисных векторов в выбранной системе координат, равной данному вектору.

где — координаты вектора.

 

Свойства

· Равные векторы в единой системе координат имеют равные координаты

· Координаты коллинеарных векторов пропорциональны:

Подразумевается, что координаты вектора не равны нулю.

· Квадрат длины вектора равен сумме квадратов его координат:

· При умножении вектора на действительное число каждая его координата умножается на это число:

· При сложении векторов соответствующие координаты векторов складываются:

· Скалярное произведение двух векторов равно сумме произведений их соответствующих координат:

· Векторное произведение двух векторов можно вычислить с помощью определителя матрицы

где

· Аналогично, смешанное произведение трех векторов можно найти через определитель

 

Ма́трицей перехо́да от базиса к базису является матрица, столбцы которой — координаты разложения векторов в базисе .

Обозначается

Представление

Так как

.

.

.

.

Матрица перехода это


 

Свойства

· Матрица перехода является невырожденной. То есть определитель этой матрицы не равен нулю.

·

 

№25

Линейные подпространства

Рассмотрим некоторое подмножество X1 линейного пространства X, т.е. X1 Н X.

Определение. Подмножество X1 линейного пространства X называется линейным подпространством, если для любых векторов x, y О X1 и любого числа α:

x + y О X1;

αx О X1.

Рассмотрим два линейных подпространства X1 и X2 линейного пространства X.

Если любой вектор x О X может быть единственным образом представлен в виде x = x1 + x2, где x1 О X1 и x2 О X2, то говорят, что пространство X разложено в прямую сумму подпространств X1 и X2.

Прямая сумма обозначается X = X1 + X2.

Любое линейное пространство может быть разложено в прямую сумму нескольких подпространств. В частности, разложение вектора по базису связано с разложением n–мерного пространства в прямую сумму n одномерных подпространств.

 

Я НЕ НАШЕЛ «ПОДПРОСТРАНСТВА ПРОСТРАНСТВА R3»

№26

Матрица линейного преобразования

В примере 19.4 было показано, что преобразование -мерного пространства, заключающееся в умножении координатных столбцов векторов на фиксированную матрицу, является линейным преобразованием. В этом разделе мы покажем, что все линейные преобразования конечномерного пространства устроены таким же образом.

Пусть -- -мерное линейное пространство, в котором задан базис , -- линейное преобразование. Возьмем произвольный вектор . Пусть -- его координатный столбец. Координатный столбец вектора обозначим .

Запишем разложение вектора по базису пространства . Для образа этого вектора получим

(19.2)


Векторы имеют какие-то координатные столбцы, обозначим их , ,..., соответственно. В этой записи первый индекс показывает номер координаты, а второй индекс -- номер вектора. Соответственно,

Подставим это выражение в равенство (19.2) и, используя предложение 14.3, изменим порядок суммирования

Это равенство означает, что -той координатой вектора служит .

Составим матрицу из координатных столбцов векторов ,...,

Вычислим произведение матрицы на столбец

Мы видим, что -ый элемент столбца совпадает с -ой координатой вектора . Поэтому

(19.3)


Это означает, что в выбранном базисе действие любого линейного преобразования сводится к умножению матрицы на координатный столбец вектора.

Матрица называется матрицей линейного преобразования . Еще раз напомним, как она составлена: первый столбец является координатным столбцом образа первого базисного вектора, второй столбец -- координатным столбцом образа второго базисного вектора и т.д.

 

Пример 19.5 Найдем матрицу линейного преобразования из примера 19.1.

Выберем какой-нибудь базис . Тогда

Следовательно, первый столбец матрицы имеет вид . Аналогично

Второй столбец матрицы имеет вид . В итоге

 

Пример 19.6 Найдем матрицу линейного преобразования из примера 19.2. Угол возьмем равным . В качестве базиса возьмем привычный ортонормированный базис i, j.

Из рисунка 19.7 видно, что вектор имеет координаты и .

Рис.19.7.Координаты образов базисных векторов при преобразовании поворота

 

Поэтому координатный столбец образа первого базисного вектора имеет вид . Координаты образа второго базисного вектора равны и , его координатный столбец имеет вид . В итоге получаем, что в базисе i, j матрица поворота на угол имеет вид

№26

Действия с линейными преобразованиями.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...