Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Описание блок-схемы алгоритма

При разработке программы были построены блок-схемы алгоритма программы, упрощающие процесс проектирования и облегчающие понимание исходного кода готовой программы (см. Приложение 1).

Блок-схема алгоритма условно разбита на 11 блоков.

Главная функция программы (блоки 1,2,5) отвечает за обработку события создания формы, взаимодействие со стандартным компонентом TСhart, а также за реализацию решения системы дифференциальных уравнений неявной схемой Адамса 3-го порядка. Блок-схема алгоритма решения задачи Коши разбита условно на 35 блоков:

1-й блок отвечает за ручной ввод интервала [a,b], на котором ищется решение системы; количества шагов сетки nx; шаг вывода результатов на экран np; строк u1 и v1, соответствующих уравнениям системы; значения искомых функций в начале заданного интервала; допустимая погрешность e.

Во втором блоке происходит вычисление шага h и установка текущего узла на x=a. Блок 3 – функция преобразования исходных записей уравнений системы в равносильные им строки с постфиксной формой записью математических операций (см. далее «алгоритм обратной польской записи»). В качестве аргументов функции выступают введённые ранее строки u1 и v1.

Блоки 4-15 – расчет первых 2-х точек заданной сетки методом Рунге-Кутта 4-го порядка. В данных блоках и далее используется пользовательская функция FPR, рассчитывающая значения вводимых пользователем уравнений в узлах заданной сетки. В качестве аргументов функции выступают: уже преобразованные в обратную польскую запись строки, задающие уравнения системы; текущее значение x; значения искомых функций на предыдущем шаге (условно обозначаем ).

В блоках 16-34 в цикле (16) рассчитываются значения искомых решений в узлах 2-nx заданной сетки неявной схемой Адамса 3-го порядка. Цикл 21-29 осуществляет итерационную процедуру неявной схемы. Условие выхода из этого цикла – выполнение неравенства de<e, где de – наибольший из модулей , e – заданная точность. Поскольку на экран выводятся значения искомых функций не во всех узлах, а только в узлах с номером, кратным шагу вывода nx, вводимым с клавиатуры, то блоки 33-34 осуществляют выбор этих узлов.

Преобразование в обратную польскую запись происходит по следующим правилам:

Рассматриваем поочередно каждый символ:

1. Если этот символ - число (или переменная), то просто помещаем его в выходную строку.

2. Если символ - знак операции (+, -, *, /,^), то проверяем приоритет данной операции. Операция возведения в степень имеет наивысший приоритет (равен 4). Операции сложения и вычитания имеют меньший приоритет (равен 2). Наименьший приоритет (равен 1) имеет открывающая скобка.

Получив один из этих символов, мы должны проверить стек:

а) Если стек все еще пуст, или находящиеся в нем символы (а находится в нем могут только знаки операций и открывающая скобка) имеют меньший приоритет, чем приоритет текущего символа, то помещаем текущий символ в стек.

б) Если символ, находящийся на вершине стека имеет приоритет, больший или равный приоритету текущего символа, то извлекаем символы из стека в выходную строку до тех пор, пока выполняется это условие; затем переходим к пункту а).

3. Если текущий символ - открывающая скобка, то помещаем ее в стек.

4. Если текущий символ - закрывающая скобка, то извлекаем символы из стека в выходную строку до тех пор, пока не встретим в стеке открывающую скобку (т.е. символ с приоритетом, равным 1), которую следует просто уничтожить. Закрывающая скобка также уничтожается.

Если вся входная строка разобрана, а в стеке еще остаются знаки операций, извлекаем их из стека в выходную строку.

Согласно этим правилам создан модуль ”Unit3.cpp”, содержащий функцию преобразования строки в обратную польскую запись OPZ (блок 3 в блок-схеме алгоритма), алгоритм которой приведён в приложении. В данном модуле использованы также вспомогательные функции PUSH, PRIOR, DEL. Функция PUSH записывает в стек, на вершину которого указывает HEAD, символ a. Возвращает указатель на новую вершину стека. Функция PRIOR вычисляет приоритет текущего символа, естественно, лишь в том случае, если текущий символ – математическая операция. Функция DEL удаляет символ с веpшины стека. Возвpащает удаляемый символ. Изменяет указатель на веpшину стека.

Для работы с полученной обратной польской записью создана функция(блок 4), организованная в виде подключаемого модуля “Unit5.cpp”. Блок-схема данной функции приведена в приложении. На начальном этапе (блоки 1-13) в цикле анализируется строка, содержащая обратную польскую запись. Если символ ранее задекларирован (‘x’,’u’,’v’,’e’,’1’..’9’), то его значение заносится в текущий элемент массива th. На следующем этапе (блоки 14-29) осуществляется «обратный ход» польской нотации: анализируется каждый символ строки, и если этот символ ранее задекларирован, то его значение помещается в стек (блоки 15-17). В случае, если текущий символ – знак математической операции, то из стека извлекаются последние два элемента и с ними проводится указанная операция. Результат заносится на вершину стека. Стек в функции реализован в виде однонаправленного массива типа double. Функция возвращает первый элемент стека.

 


Описание программы

После проведённого обзора программных средств для разработки данного программного продукта, была выбрана среда Borland C++ Builder. Язык С++ хорошо зарекомендовал себя эффективностью, лаконичностью записи алгоритмов, логической стройностью программы, хорошей переносимостью. Программы, написанные на языке С++, сравнимы по скорости с программами, написанными на языке ассемблера; при этом они более наглядны и просты в сопровождении. Среда Borland C++ Builder является средством быстрой разработки windows-приложений, позволяющее создавать приложения на языке С++, используя среду разработки и библиотеку компонентов Delphi.

Готовая программа представляет собой исполняемый файл с именем “Adams3.exe”, реализованный в виде Widows-приложения в среде Borland C++ Builder. После запуска программы на рабочем окне появляется рабочее окно с заголовком «Решение систем дифференциальных уравнений» (см. Приложение 3, рис.1). В активном окне можно выделить следующие области:

1) Область ввода исходных данных.

2) Окно вывода результатов.

3) Поле отображения графиков полученных функций, являющихся

решением заданной системы, и графиков истинного решения.

4) Основное меню.

1) Область исходных данных содержит поля, в которые требуется ввести начальные данные: систему дифференциальных уравнений; интервал, на котором требуется найти решение заданной системы; допустимую погрешность; условия Коши в начальной точке заданного интервала; количество шагов “сетки” и шаг вывода полученных значений искомых функций в узлах сетки.

В поля ”du/dx= “ и “dv/dx= “ вводятся дифференциальные уравнения, содержащие символы, ‘u’, ‘v’ ‘x’, ‘e’, ’1’..’9’, ’+’, ’-‘, ‘*’, ‘/’, ‘^’, ‘(‘, ‘)’. Здесь: символы ‘u’ и ‘v’ представляют собой искомые функции, символ ‘e’ является основанием натурального логарифма, символ ‘^’ обозначает операцию возведения в степень. Использование других символов нежелательно, так как они будут проигнорированы программой.

Поля с заглавием «интервал [a;b]» содержат начальную и конечную точку промежутка, на котором будет найдено решение заданной системы.

В поле «количество шагов сетки» требуется ввести целое число, равное количеству точек по оси OX на заданном интервале, в которых ищем значения функций u(x) и v(x).

Поле «шаг вывода» содержит целое число, определяющее частоту вывода на экран результатов из множества результатов во всех узлах заданной сетки.

Поля под общим названием «начальные условия» содержат условия Коши – значения искомых функций в начале заданного интервала [a,b].

Для корректной работы программы все поля должны быть заполнены. При запуске программы все вышеперечисленные поля уже содержат стандартную информацию для теста программы, которую можно изменять.

Пользователю предоставляется возможность выбора режима программы. При запуске программы метка возле надписи «Не использовать метод сгущающихся сеток» отсутствует, и программа, используя метод учащающихся сеток подберёт после первого нажатия кнопки «выполнит» оптимальное значение количества шагов для достижения заданной точности. После повторного нажатия кнопки «выполнить» будут произведены вычисления уже для рекомендуемого значения шага сетки. Если метка поставлена, то после нажатия кнопки «выполнить» будет решена задача Коши для заданного интервала, но заданная точность не будет достигнута. Данный режим позволяет вводить различные системы дифференциальных уравнений, отличных от стандартных тестовых, решением которых являются функции u(x)=2*x, v(x)=exp(x).

2) Все результаты, полученные в ходе работы программы, отображаются в отдельном окне (рис. 2). При желании, всю информацию из этого окна можно сохранить в отдельный файл.

3) Полученное решение в виде графиков искомых функций выводится в отдельное поле (рис. 2). Здесь отображаются также графики функций f(x)=2*x и f(x)=exp(x), являющихся точным решением для тестовых систем дифференциальных уравнений. Поле отображения графиков масштабируемо.

4) Основное меню содержит следующие пункты: «Файл» и «О программе» (рис. 3). В свою очередь пункт меню «Файл» содержит следующие подпункты: «новый», «открыть», «сохранить как…» и «выход».

При выборе пункта «новый» все поля и окна будут очищены. Поле отображения графиков будет также очищено.

Выбрав пункт «сохранить как…», вся информация из окна результатов будет сохранена в выбранный пользователем файл (по умолчанию с расширением.txt).

Выбор пункта «открыть» приводит к загрузке из уже сохранённого ранее файла системы дифференциальных уравнений.

Программа работает стабильно, не приводит к ошибкам.

Анализ результатов

 

Результатом работы программы “Adams3.exe” является таблица значений полученного решения в узлах заданной сетки, значений точного решения и разность между точным и полученным решениями. Данную таблицу можно сохранить в текстовый файл с возможностью дальнейшего просмотра и редактирования.

В качестве тестовой задачи была решена задача Коши при помощи неявной схемы Адамса 3-го порядка на интервале [2,4] с начальными условиями :

 


.

 

Точным решением данной системы являются функции:

 

 

Требовалось добиться решения системы дифференциальных уравнений с точностью до 0.0001.

Результат решения (выходной файл):

Входные данные:

 

du/dx= u/x+v-e^x;

dv/dx= 2*x/u+v^2/e^x-1;

 

Интервал: [2;4]

Допустимая погрешность: е=0,0001

Начальные условия:

u=4

v=7,389056098930650230

Количество шагов сетки: 320

Шаг вывода: 32

Результаты:

x | u(x) | точное | разн. | v(x) | точное | разн. |

2,000 4,0000 4,0000 0,0000 7,3891 7,3891 0,0000

2,200 4,4000 4,4000 0,0000 9,0250 9,0250 0,0000

2,400 4,8000 4,8000 0,0000 11,0232 11,0232 0,0000

2,600 5,2000 5,2000 0,0000 13,4637 13,4637 0,0000

2,800 5,6000 5,6000 0,0000 16,4446 16,4446 0,0000

3,000 6,0000 6,0000 0,0000 20,0855 20,0855 0,0000

3,200 6,4000 6,4000 0,0000 24,5325 24,5325 0,0000

3,400 6,8000 6,8000 0,0000 29,9641 29,9641 0,0000

3,600 7,2000 7,2000 0,0000 36,5982 36,5982 0,0000

3,800 7,6000 7,6000 0,0000 44,7012 44,7012 0,0000

4,000 8,0000 8,0000 0,0000 54,5981 54,5982 0,0000

Время выполнения: 0,015с

Как видно из полученного результата, точность в 0.0001 достигается уже при количестве шагов, равном 320. Время. Затраченное на расчёт таблицы значений на заданном интервале составляет всего 0.015 секунд, что практически не ощутимо. Увеличение шага сетки приведёт к повышению точности решения, однако это увеличит и время работы вычислительного процесса.

Заданная точность достигается за минимальное количество итерраций (1-3 итерации).

Ниже приведен график функций полученного и точного решений:

 

Рис. 5.1 График полученного и точного решения

 

Рис. 5.2 График полученного и точного решения


Как видно из рисунков 5.1, 5.2, расхождение кривых наблюдается только при достаточно большом увеличении графика.

Предложенная задача Коши была также решена в математическом пакете “ Mathcad 11” двумя методами: методом Рунге-Кутта 5-го порядка и методом Рунге-Кутта с непостоянным шагом. Реализация решения системы дифференциальных уравнений в “ Mathcad 11” и таблицы результатов приведены ниже:

Реализация решения задачи Коши методом Рунге-Кутта 5-го порядка:

 

 

Таблица 5.1 – Результаты решения задачи Коши методом Рунге-Кутта 5-го порядка.

x

u(x)

v(x)

 

x

u(x)

v(x)

2

4

7,3890561

 

3,1

6,2

22,19795

2,02

4,04

7,5383249

 

3,12

6,24

22,64638

2,04

4,08

7,6906092

 

3,14

6,28

23,10387

2,06

4,12

7,8459698

 

3,16

6,32

23,5706

2,08

4,16

8,0044689

 

3,18

6,36

24,04675

2,1

4,2

8,1661699

 

3,2

6,4

24,53253

2,12

4,24

8,3311375

 

3,22

6,44

25,02812

2,14

4,28

8,4994376

 

3,24

6,48

25,53372

2,16

4,32

8,6711376

 

3,26

6,52

26,04954

2,18

4,36

8,8463062

 

3,28

6,56

26,57577

2,2

4,4

9,0250135

 

3,3

6,6

27,11264

2,22

4,44

9,2073308

 

3,32

6,64

27,66035

2,24

4,48

9,3933313

 

3,34

6,68

28,21913

2,26

4,52

9,5830891

 

3,36

6,72

28,78919

2,28

4,56

9,7766804

 

3,38

6,76

29,37077

2,3

4,6

9,9741824

 

3,4

6,8

29,9641

2,32

4,64

10,175674

 

3,42

6,84

30,56941

2,34

4,68

10,381237

 

3,44

6,879999

31,18696

2,36

4,72

10,590951

 

3,46

6,919999

31,81698

2,38

4,76

10,804903

 

3,48

6,959999

32,45972

2,4

4,8

11,023176

 

3,5

6,999999

33,11545

2,42

4,84

11,245859

 

3,52

7,039999

33,78443

2,44

4,88

11,473041

 

3,54

7,079999

34,46692

2,46

4,92

11,704811

 

3,56

7,119999

35,1632

2,48

4,96

11,941264

 

3,58

7,159999

35,87354

2,5

4,9999999

12,182494

 

3,6

7,199999

36,59823

2,52

5,0399999

12,428597

 

3,62

7,239999

37,33757

2,54

5,0799999

12,679671

 

3,64

7,279999

38,09184

2,56

5,1199999

12,935817

 

3,66

7,319999

38,86134

2,58

5,1599999

13,197138

 

3,68

7,359999

39,64639

2,6

5,1999999

13,463738

 

3,7

7,399999

40,4473

2,62

5,2399999

13,735723

 

3,72

7,439999

41,26439

2,64

5,2799999

14,013204

 

3,74

7,479999

42,09799

2,66

5,3199999

14,296289

 

3,76

7,519999

42,94842

2,68

5,3599999

14,585093

 

3,78

7,559999

43,81604

2,7

5,3999999

14,879732

 

3,8

7,599999

44,70118

2,72

5,4399999

15,180322

 

3,82

7,639999

45,60421

2,74

5,4799999

15,486985

 

3,84

7,679999

46,52547

2,76

5,5199999

15,799843

 

3,86

7,719999

47,46535

2,78

5,5599999

16,119021

 

3,88

7,759999

48,42421

2,8

5,5999999

16,444647

 

3,9

7,799999

49,40245

2,82

5,6399999

16,776851

 

3,92

7,839999

50,40044

2,84

5,6799999

17,115765

 

3,94

7,879999

51,4186

2,86

5,7199999

17,461527

 

3,96

7,919999

52,45732

2,88

5,7599999

17,814273

 

3,98

7,959998

53,51703

2,9

5,7999998

18,174145

 

4

7,999998

54,59815

2,92

5,8399998

18,541287

 

 

 

 

2,94

5,8799998

18,915846

 

 

 

 

2,96

5,9199998

19,297972

 

 

 

 

2,98

5,9599998

19,687816

 

 

 

 

3

5,9999998

20,085537

 

 

 

 

3,02

6,0399998

20,491291

 

 

 

 

3,04

6,0799998

20,905243

 

 

 

 

3,06

6,1199998

21,327557

 

 

 

 

3,08

6,1599998

21,758402

 

 

 

 

 

Реализация решения задачи Коши методом Рунге-Кутта с непостоянным шагом:

 

 

Таблица 5.2 – Результаты решения задачи Коши методом Рунге-Кутта с непостоянным шагом.

X

u(x)

v(x)

2

4

7,389056099

2,2

4,4

9,025013486

2,4

4,8

11,02317634

2,6

5,2

13,46373796

2,8

5,6

16,44464663

3

6

20,08553669

3,2

6,4

24,53252981

3,4

6,8

29,96409944

3,6

7,2

36,59823348

3,8

7,6

44,701183

4

8

54,59814775

 

Как видно из полученных таблиц результатов, точность решения в 0.0001 при решении методом Рунге-Кутта с непостоянным шагом достигается всего за 10 шагов, в то время, когда для достижения этой же точности при решении методом Рунге-Кутта 5-го порядка с постоянным шагом требуется около 100 шагов.

Сравнивая полученные результаты с результатами работы программы “Adams3.exe”, приходим к выводу, что неявная схема Адамса третьего порядка достаточно эффективна при численном решении задачи Коши (быстрота, высокая точность решения), однако по своим характеристикам она уступает более совершенным методам, применяющимися в различных математических пакетах.


Заключение

Результатом выполнения курсового проекта является готовый программный продукт, позволяющий решать задачу Коши для системы дифференциальных уравнений при помощи неявной схемы Адамса 3-го порядка, демонстрирующий возможности численного решения поставленной задачи с заданной степенью точности.

Готовый программный продукт может найти широкое применение при решении многих прикладных технических программ, а в частности, эффективно использование применённой схемы Адамса 3-го порядка для решения так называемых “жёстких” систем дифференциальных уравнний, для которых существует лишь численное решение.

Данная программа решает заданную пользователем систему дифференциальных уравнений с указанной точностью за минимальный промежуток времени. При этом пользователю предоставляется возможность визуально оценить неточность решения, сравнивая графики полученного и точного решений.

К достоинствам программы можно отнести также удобный пользовательский интерфейс, возможность ввода пользовательских систем дифференциальных уравнений, а также высокая стабильность работы. Однако имеются и некоторые недостатки. К недостаткам программы можно отнести: критичность к вводимым пользователем функций, отсутсвие обработки исключительных событий. Это, естественно, ограничивает возможности программы.


Литература

1. Архангельский А.Я. Программирование в С++ Builder 6. – М.: ЗАО “Издательство БИНОМ”, 2002. – 360 с.

2. Калиткин Н.Н. Численные методы. ¾ М.: Наука, 1978. ¾ 512 с.

3. Самарский А.А., Гулин А.В. Численные методы. ¾ М.: Наука, 1989. – 432с.

4. Синицын А.К., Навроцкий А.А. Алгоритмы вычислительной математики. - Мн.: БГУИР,2002. – 80 с: ил.

5. Синицин А.К. Программирование алгоритмов в среде Builder C++. –Мн.: БГУИР, 2004. – 90 с.: ил.

6. Страуструп Бьерн. Язык программирования C++. –М.: ЗАО “Издательство БИНОМ”, 2002. – 1099c.:ил.

7. Шилд Г. Программирование на Borland C++ для профессионалов— М.:ООО “попурри”,1999. – 800c.:ил.

 


Приложения

Приложение 1

Блок-схема алгоритма


Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...