Расчёт и корректировка исходного состава воды
Введение
В настоящее время вода широко используется в различных областях промышленности в качестве теплоносителя и рабочего тела, чему способствует широкое распространение воды в природе и ее особые термодинамические свойства, связанные со строением молекул. Полярность молекул воды, характеризуемая дипольным моментом, определяет большую энергию взаимного притяжения молекул воды (ориентационное взаимодействие) при температуре 10…30 С и соответственно большую теплоту фазового перехода при парообразовании, высокую теплоемкость и теплопроводность. Значение диэлектрической постоянной воды, также зависящей от дипольного момента, определяет своеобразие свойств воды как растворителя. При нагреве воды на поверхностях нагрева образуются твердые отложения накипеобразующих солей. При испарении воды в пар переходят коррозионно-активные газы, которые способствуют разрушению поверхности охлаждения и генерируют новые вещества, образующие отложения из продуктов коррозии. Надежность работы энергетического оборудования на станции непосредственно связана с качеством подпиточной воды котлов. Правильно рассчитанный, смонтированный и эксплуатируемый комплекс водоподготовки, дополненный химической программой коррекции котловой воды, является необходимым условием долговечной и экономичной работы любого котлоагрегата. В условиях эксплуатации энергетического оборудования на ТЭС или АЭС при организации водного режима необходимо создавать условия, при которых обеспечиваются минимальные значения скорости коррозии и снижение накипных отложений. Отложения могут образовываться из примесей, поступающих в воду теплоэнергетических установок от внешних и от внутренних источников.
Исходные данные
Исходной водой является вода Бассейны Ингула со следующим химическим составом: -биогенные компоненты:
NO2+=0,030 мг/л; NO3+=0,11 мг/л; Fe=0,11 мг/л; P=0,060мг/л; Si=5,9 мг/л; -окисляемость: БО=28,4 мгО2/л; ПО=7,8мгО2/л; -главные ионы: HCO3-=294,7 мг/л; SO42-=67,8 мг/л; Cl-=55,7 мг/л; Ca2+=92,3 мг/л; Mg2+=15,9 мг/л; Na++K+=38,5мг/л; -Жо=5,9 мг-экв/л; Блоки: 210МВт 6шт.
Таблица 1
Расчёт и корректировка исходного состава воды
Для начала найдём эквивалентные массы ионов:
Э = М/Z,
где М- молярная масса иона; Z- заряд иона. Э(Са2+) = 40,08/2 = 20,04 г-экв;
Эквиваленты остальных ионов считаются аналогично. Расчет начинаем с анионного состава воды:
[С] = [Н]/Э,
где [Н]- концентрация иона, выраженная в мг/л, Э- эквивалент иона. С(HCO3-) =3,274мг-экв/кг; С(SO42-) = 0,360мг-экв/кг; C(Cl-) = 0,367 мг-экв/кг. Σ An = 4,001мг-экв/кг. Рассчитаем катионный состав воды: С(Са2+) = 2,585мг-экв/кг; С(Mg2+) = 0,899мг-экв/кг; С(Na+) = 0,278мг-экв/кг; Σ Kt = 3,762мг-экв/кг. Правильность определения концентраций катионов и анионов, т.е. солей, образованных эквивалентным количеством ионов, проверяют на основании закона электронейтральности по уравнению:
Σ Kt=ΣAn.
При несоблюдении этого условия, следует скорректировать состав воды. Это достигается путём добавления натрия Na+. Т.о. закон электронейтральности соблюдается. Пересчитаем значения концентраций примесей в другие виды концентраций: [N]= [Н]/(М.1000), моль/л; Пересчёт остальных концентраций осуществляется аналогично. [С]= [Н]/104,% Ионная сила раствора равна полусумме произведений молярных концентраций на квадраты их зарядов.
μ = 0,5
Коэффициент активности – функция ионной силы раствора:
lg f' = -0.5Zi2 f = 10
Концентрация в природных водах недиссоциированных молекул Н2СО3 составляет обычно лишь доли процента от общего количества свободной углекислоты, под которым понимают сумму Н2СО3+ СО2. Равновесное значение суммы Н2СО3+ СО2, моль/кг
Н2СО3+ СО2 =
и рН – равновесное
Таблица 2
Вывод: Величина pH имеет оптимальное значение, т.к. входит в интервал 5,5-7,5. Бикарбонатная щелочность увеличилась на дозу коагулянта, а содержание сульфатов увеличилось.
Коагуляция исходной воды
В данном случае, в качестве коагулянта использовался сернокислый алюминий Al2(SO4)3. Доза добавляемого коагулянта: Dk = 0,07.ПО = 0,12.8,1 = 0,972мг-экв/л.
Т.к. Dk>0,5 принимаем это значение равное 0,5 мг-экв/л. Оптимальное значение рН при коагуляции с сернокислым алюминием находится в интервале 5,5 – 7,5. Значение величины рН среды при коагуляции оказывает влияние на скорость и полноту гидролиза. При коагуляции в обрабатываемой воде увеличивается содержание сульфатов, но уменьшается бикарбонатная щелочность на дозу коагулянта. Катионный состав воды не меняется.
Таблица 3
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|