Из опыта учителей начальных классов по использованию дидактических игр на уроках математики
Мы в своей работе по развитию у учащихся 1-го класса познавательной активности при изучении чисел первого десятка руководствовались общими выводами и рекомендациями по данной проблеме на уроках в начальных классах, с учётом возрастных и индивидуально-психологических особенностей учеников, а также применяли на уроках дидактические игры, способствующие развитию познавательной активности. Игра является одним из важных средств в усвоении знаний, развитии и воспитании учащихся. Она может быть применена в рамках разных методов обучения. Приведем для примера систему игр и занимательных заданий по математике для учащихся первых и вторых классов, где используются разнообразные методы обучения. К первой группе относятся игры, в основе которых лежит объяснительно-иллюстративный метод обучения. Эти игры используются на этапе объяснения нового материала. С помощью такого вида игр учитель сообщает новые знания на основе использования наглядных средств, беседы, показа диафильма и т.д. Учащиеся слушают, смотрят, воспринимают, осознают и запоминают сообщенные знания. Приведем пример игры учащихся II класса, цель которой состоит в объяснении приема сложения однозначных чисел с переходом через десяток. Украсить елочку шарами Детям предлагается рассмотреть пример под рисунком и нарисовать на первом ярусе елочки число шаров, равное первому слагаемому. Но втором и третьем ярусах нужно нарисовать такое их число, которое равно второму слагаемому. При этом количество шаров на втором ярусе должно дополнять количество шаров на первом до 10. На третьем ярусе дети должны изобразить остальные шары. В этой игре ученики осознают приемы сложения на основе наглядности. Характерной чертой объяснительно-иллюстративного метода является выполнение действий по образцу.
Разместите числа от 1 до 12 (по одному числу в каждой фигуре) гак, чтобы они составляли одну и ту же сумму в следующих направлениях: в каждой из двух средних центральных колонок, в 4 треугольниках вместе, в 4 квадратах вместе. 5. Задачи на сообразительность. а) Кто какую игрушку спрятал? Играя, каждая из трех подруг — Катя, Галя и Оля — опустила в свой «чудесный» мешочек одну из игрушек: медвежонка, зайчика, слоненка. Известно, что Катя не прятала зайчика. Оля не прятала ни зайчика, ни медвежонка. Предлагается узнать, у кого какая игрушка. Приведенные примеры игр убеждают в том, что в игре можно запрограммировать любой метод обучения. Умелое руководство игрой требует мастерства от учителя. Перед проведением игры надо доступно изложить сюжет, распределить роли, поставить перед детьми познавательную задачу, продумать методику проведения игры, подготовить необходимое оборудование, сделать нужные записи на доске. Если дидактическая задача скрыта сюжетом, ролью, игровым действием, то в ходе беседы с детьми учитель должен обратить на нее внимание. б) Например, в игре «Лучший летчик» учитель заостряет внимание детей на дидактической задаче примерно так: «Вы можете долететь до назначенного пункта при том условии, если правильно произведете расчеты (правильно решите примеры, в которых зашифрован путь полета вашего самолета)». В игре (в этой или иной роли) должен участвовать каждый ученик класса. Если у доски осуществляет игровую деятельность часть учащихся, то все остальные дети должны выполнять роль контролеров, судей, учителя и т.д. Характер игровой деятельности учащихся зависит от места игры на уроке или в системе уроков (надо сказать, что она может быть проведена на любом этапе урока и на уроке любого типа).
Если игра используется на уроке объяснения нового материала, то в ней должны быть запрограммированы практические действия детей с группами предметов или рисунками. На уроках закрепления материала важно применять игры на воспроизведение свойств, действий, вычислительных приемов и т.д. В этом случае использование средств наглядности следует ограничить и направить внимание на проговаривание вслух правил, свойств, вычислительных приемов. В системе уроков по теме важно подбирать игры на разные виды деятельности: исполнительскую, воспроизводящую, контролирующую и поисковую. В игре следует продумывать не только характер управления ею. С этой целью используются средства обратной связи с учениками: сигнальные карточки (кружки зеленого цвета с одной стороны и красного — с другой) или разрезные цифры. Когда вызванные к доске дети решают в игре примеры или задачи, учащиеся, сидящие за столами, показывают либо разрезные цифры (ответ), либо сигнальные карточки (зеленого цвета — если с ответом согласны, красного цвета — если ответ неправильный). Сигнальные карточки служат средством активизации детей в игре. Игре свойственны определенный темп, ритм; в процессе ее недопустимы пространные объяснения; правила должны излагаться кратко, доступно, лаконично. Снижает интерес обилие замечаний дисциплинарного характера, пассивное ожидание ребенком своего участия в игре. Учитель должен сам показать живой интерес к игре, увлечь учащихся. В некоторых играх он создает ситуацию ожидания, загадочности. Успех игры зависит от того, как учитель ее проводит. Вялость, безразличие улавливается даже шестилетними детьми, и интерес детей к игре быстро угасает. В игре дети должны себя чувствовать свободно, непринужденно, испытывать удовлетворение от сознания своей самостоятельности и полноценности. Игра, содержащая несколько правил, расчленяется на составные части и выполняется поэтапно. В большинстве игр целесообразно вносить элементы соревнования, что повышает активность детей в процессе обучения. Для проведения соревнования учитель в таблице на доске звездочками отмечает дружную работу команд в течение урока. Если активность и интерес детей какой-либо команды ослабевает (например, из-за того, что команда набрала меньшее количество звездочек), учитель должен спросить какого-либо ученика из этой команды, с тем чтобы он ответил правильно и получил за ответ звездочку. В конце урока учитель вместе с детьми, подводя итоги соревнования, обращает внимание на дружную работу участников команд, что способствует формированию чувства коллективизма. Необходимо отнестись с большим тактом к детям, допустившим ошибки. Учитель может сказать такому ребенку, что он еще не стал «капитаном» в игре, но если будет стараться, то непременно им станет. Ошибки учащихся надо анализировать не в ходе игры, а в конце, чтобы не нарушать впечатления. К разбору ошибок надо привлекать слабых учащихся.
Форма проведения игры может быть разной: коллективной, групповой и индивидуальной. При объяснении нового материала или его первичном закреплении целесообразно проводить игру со всем классом. При организации самостоятельной работы игра может быть групповой или индивидуальной. В этом случае следует использовать игровые карточки. Учитель проводит игру со слабыми учащимися по-разному. В одном случае он может вызвать их к доске, когда другие заняты самостоятельной работой, напомнить им правила игры, выполнив с ними на доске 1-2 игровых действия, и предложить закончить игру по карточкам на своем рабочем месте. В другом случае он организует игру слабого ученика в паре с сильным, который помогает первому выполнить игровые действия. В тех случаях, когда слабые ученики хорошо усваивают правила той или иной игры, им предлагают игру с раздаточными карточками. В индивидуальных и групповых играх сложна проверка результатов игры. К ней учитель должен тщательно готовиться. Так, при проведении игры «Вычислительная машина» учитель заранее «прогоняет через машину» все возможные варианты чисел, которые предположительно могут «заложить в нее» учащиеся. Решив все примеры по схеме действий, учитель составляет таблицу, в которой записывает исходные числа и соответствующие ответы. При проверке ответов в игре учащиеся показывают на карточках исходное число, в конце игры — конечный результат.
Игровой материал в пособии группируется в соответствии с последовательностью и сущностью раскрываемых тем. Вначале предлагаются игры с использованием демонстрационного и раздаточного материала, а затем — словесные игры (без использования средств наглядности). С помощью дидактических игр на уроках математики осуществляется умственное развитие, развивается логическое мышление младших школьников. Основными целями, для достижения которых широко используется применение дидактических игр на практике в начальных классах, являются следующие: -интеллектуальное развитие младших школьников; -создание подходящих условий для формирования развития каждого ребенка как личности, развитие его творческих способностей; -приобщение школьников к общечеловеческим ценностям; -индивидуальный подход к каждому ребенку и применение индивидуальных средств обучения; -увеличение объема понятий, представлений и сведений, которыми овладевает ученик; они составляют индивидуальный опыт школьника; -углубление уже усвоенных ранее знаний; -переход движения от поверхностного отражения, т. е. познания лишь самого явления, к раскрытию законов и закономерностей данного явления; -объединение знаний в категории и системы; -их связывание и превращение из раздробленных рядов в системно построенные «роды»; -приобретение знаниями подвижности и гибкости, превращение их в управляемые самим субъектом. -превращение знаний в более дифференцированные и точные; -переход ученика от слитных малорасчлененных понятий и образов к оперированию более точными знаниями, к различению сходных знаний; -эмоционально-психологическое развитие младших школьников, которому способствует участие в дидактических играх. Таким образом, полученные учащимися знания в результате дидактической игры служат основой важнейших умений и навыков, которые должны освоить младшие школьники. Так приобретенные математические знания позволяют им сознательно овладеть математическими умениями и навыками. В следующем параграфе мы рассмотрим содержание комплекса дидактических игр для изучения темы «Натуральные числа первого десятка».
Содержание комплекса дидактических игр для изучения темы «Нумерация чисел первого десятка»
Для подготовки к изучению нумерации чисел и действий сложения и вычитания пределах 10 введен раздел «Сравнение групп предметов». В нем дети усваивают способы практического сопоставления элементов: устанавливают отношения «больше», «меньше», «равно» и преобразуют числовое неравенство в числовое равенство. При изучении раздела «Нумерация чисел первого десятка» используются, прежде всего, такие игры, с помощью которых дети осознают приёмы образования каждого последующего и предыдущего чисел. На этом этапе можно применять игру «Составим поезд». Эта игра наглядно показывает, что каждое следующее число образуется путём прибавления единицы к предыдущему числу, а каждое предыдущее получается путём вычитания единицы из последующего. Такие игры можно использовать на этапе объяснения нового материала. Дети проговаривают образование чисел первого десятка. При нумерации чисел в пределах 10 необходимо довести до понимания детей. Что последнее названное при счете число обозначает общее количество всей группы предметов. С помощью этих игр дети устанавливают соответствие между числом и цифрой. Изучая числа первого десятка, важно сравнивать каждое предыдущее число с последующим, и наоборот.
Изучая с детьми состав чисел, педагог опирается на знание учащимися как приёмов нумерации чисел первого десятка, так и приёмов сложения и вычитания в пределах 10. Работа над составом числа начинается еще в разделе «Нумерация чисел первого десятка». Для пропедевтики в изучении состава числа ценными будут такие задания, при выполнении которых учащиеся из одной группы предметов перекладывают в другую по одному предмету до тех пор, пока в первой группе не остается ни одного предмета. В таких упражнениях дети закрепляют знание нумерации чисел первого десятка, а также наблюдают, как одна группа предметов увеличивается на единицу. Другая уменьшается на столько же. Систематический учёт числа предметов, образовавшегося в каждой группе после того, как один из предметов переложили в другую группу, позволит рассмотреть все варианты состава любого изучаемого числа. На втором этапе дети в игре знакомятся с составом чисел на основе сложения по памяти. При изучении раздела “Нумерация чисел первого десятка” используются, прежде всего, такие игры, с помощью которых дети осознают приёмы образования каждого последующего и предыдущего числа. На этом этапе можно применить игру “Составим поезд”: Дидактическая цель: ознакомить детей с приёмом образования чисел путём прибавления единицы к предыдущему числу и вычитания единицы из последующего числа. Содержание игры: учитель вызывает к доске поочерёдно учеников. Каждый из них выполняет роль вагона, называет свой номер. Например, первый вызванный ученик говорит: “Я первый вагон”. Второй ученик, выполняя роль второго вагона, цепляется к первому вагону (кладёт руку на плечо ученика, стоящего впереди). Называет свой порядковый номер, остальные составляют пример: “Один да один, получится два”. Затем цепляется третий вагон, и все дети по сигналу составляют пример на сложение: “Два да один – это три”. Потом вагоны (ученики) отцепляются по одному. а класс составляет примеры вида: “Три без одного – это два. Два без одного – это один”. На основе использования игры “Составим поезд” учащимся предлагают считать число вагонов слева направо и справа налево и подводят их к выводу: считать числа можно в одном направлении, но при этом важно не пропустить ни одного предмета и не сосчитать его дважды. Также при знакомстве детей с приёмом образования чисел можно использовать игру “Живой уголок”. Дидактическая цель: ознакомление детей с приёмом образования чисел при одновременном закреплении пространственной ориентации, понятий “больше”, “меньше”. Средства обучения: изучение животных. Содержание игры: учитель говорит: “В нашем живом уголке живут кролики: серый и белый, кролики грызут морковь. Сколько кроликов грызут морковь? (два, ответ фиксируется показом цифры 2). Назовите, какие кролики грызут морковь? (серый и белый). К ним прибежал ещё один кролик. Что изменилось? (кроликов стало больше) Сколько кроликов теперь едят морковь? (три, ответ фиксируется показом цифры 3) Перечисли их (один белый и ещё один белый, и ещё один серый, всего три). Каких кроликов больше, белых или серых? (белых) Почему их больше? (их два, а два это один и один). Почему 2>1? (два идёт при счёте после числа 1). Аналогично можно рассматривать образование последующих чисел. При изучении нумерации в пределах десяти необходимо довести до понимания детей, что последнее названное при счёте число обозначает общее количество всей группы предметов. С этой целью следует проводить игры “Лучший счётчик”, “Хлопки”. С помощью этих игр дети устанавливают соответствие между числом и цифрой. “Лучший счётчик” Содержание игры: учитель на магнитном моделеграфе по секторам соответственно размещает от 1 до 10 рисунков. Открывая каждый сектор поочерёдно, учитель предлагает детям сосчитать число рисунков и показать нужную цифру. Сосчитавший первый называется лучшим счётчиком. Затем учитель показывает цифры вразбивку, а ученики – соответствующее число рисунков в секторах круга. В итоге игры учитель открывает 2 сектора, предлагает сравнить число рисунков в них и определить, где предметов меньше и на сколько. “Хлопки” Содержание игры: учитель на магнитном моделеграфе размещает по секторам от 1 до 10 рисунков. Открывая по очереди сектор за сектором, предлагает сосчитать число рисунков и по его сигналу похлопать столько же раз, сколько открыто рисунков, и показать нужную цифру. (учитель задаёт ритм хлопков). Изучая числа первого десятка, важно сравнивать каждое предыдущее число с последующим и наоборот. Для этого предназначены игры “Лучший счётчик”, “Число и цифру знаю я”. Содержание игры: учитель на магнитном моделеграфе поочередно открывает сектор за сектором, дети считают число цифр в каждом из них и показывают учителю соответствующую карточку с цифрой, а затем сравнивают число цифр в двух соседних секторах магнитного моделеграфа. Работа над составом числа начинается в разделе “Нумерация чисел первого десятка”. Состав чисел от одного до пяти дети в этот период должны знать на память, состав чисел 6-10 можно рассматривать на наглядной основе, на следующем этапе дети знакомятся с составом чисел на основе сложения по памяти. На третьем этапе дети воспроизводят состав чисел на основе выявленной закономерности: числа, стоящие на одинаковых местах (слева и справа) в числовом ряду, составляет в сумме последнее число в этом ряду. В этот период большую помощь учащимся в изучении состава чисел окажет игра “Числа, бегущие навстречу друг другу”: Дидактическая цель: знакомство с составом числа 10. Содержание игры: учитель предлагает детям записать в тетрадь числа от 1 до 10 по порядку и дугами показать два числа, которые бегут навстречу друг другу, образуя в сумме число 10. Затем просит записать примеры на сложение с этими числами. Например: 0 1 2 3 4 5 6 7 8 9 10 0 + 10 = 10 10 + 0 = 10 1 + 9 = 10 9 + 1 =10 Учитель спрашивает: “Что интересного вы заметили при составлении примеров? Дети отвечают, что числа, стоящие на одинаковых местах справа и слева в числовом ряду, составляют в сумме число 10”. Данные дидактические игры помогут учащимся осмысленно усвоить состав числа. Дети чувствуют в таких играх себя свободно, непринуждённо, с интересом участвуют в играх, развивается их познавательная активность на уроках математики. О проведенном эксперименте по использованию дидактической игры как средства развития познавательной активности при изучении чисел первого десятка пойдет речь в следующем параграфе.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|