Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Расширение классической логики как следствие ее ограничения (переводы и погружения)




 

Если изучение функциональных свойств (замкнутые классы, полнота, предполнота, базисы и т.д.) является прерогативой специалистов в области дискретной математики, инженеров, программистов, физиков, то изучение логики как объекта в виде исчисления относится к сфере “чистой” логики.

Указанная в предыдущем разделе критика законов и основ классической логики носила бескомпромиссный характер в своей тенденции ограничить сферу последней, но никто из перечисленных авторов не мог даже предположить, что на самом деле неявным образом происходит процесс расширения средств и аппарата классической логики C2. Из результата В. Гливенко о погружении C2 в H следует, что интуиционистская логика даже “богаче” C2. Более того, Гёдель показал, что классические законы, включающие только отрицание, конъюнкцию и квантор всеобщности, являются интуиционистскими законами. Поскольку импликация, дизъюнкция и квантор существования определяются через указанные “интуиционистские” логические связки, то можно строго утверждать, что классическая логика предикатов есть подсистема интуиционистской, а значит, вторая есть расширение первой. Гёделем был также предложен метод аксиоматизации льюисовских модальных систем как расширение C2. Оказалось, что n-значные логики (в том числе и предикатные) аксиоматизируются подобным образом. Одним из самых первых примеров в этой области является аксиоматизация в 1971 г. трехзначной логики бессмысленности Д. А. Бочвара B3, которая по своим функциональным свойствам слабее Ł3, в то время как Ł3 не является функционально полной. Уже в 1938 г. Д. А. Бочвар при построении B3 выделяет её трехзначный фрагмент, изоморфный C2, т. е. этот фрагмент верифицирует всю классическую пропозициональную логику. Уже отсюда следует, что B3 можно строить на основе C2. Отметим также, что и релевантная логика R может быть построена на основе C2 (отрицание де Моргана заменяется на булево отрицание).

Погружение или перевод одной логической системы в другую (первым примером которого является теорема Гливенко) к концу нашего века становится темой тщательного исследования. Самое общее понятие перевода состоит в следующем: cистема S переводима в S', если существует функция (возможно, но не необходимо отображение) между двумя универсумами рассуждений, которая сохраняет (по крайней мере, в одну сторону) отношение дедуцируемости.

Исследование переводов логических систем обеспечивает: новые семантики для неклассических логик, сводит метаматематические и металогические свойства одной системы к другой, чтобы получить нужные результаты, позволяет точно выявить смысл дуальности между логиками (в первую очередь это относится к интуиционистской логике), проясняет и выявляет взаимоотношения между совершенно различными логическими системами.

 

Алгебраизация логики

 

Одновременно с традицией развития логики как дедуктивной системы, идущей от Фреге, Уайтхеда и Рассела, развивался совершенно другой подход к логике, наиболее полно выраженный Э. Шрёдером в его трехтомных “Лекциях по алгебре логики” (1890-1905). В третьем томе развивается исчисление отношений и вводятся кванторы, но нигде нет понятия формального доказательства. Предшественники Шрёдера Дж. Буль, В. Джевонс и Ч.С. Пирс, впервые применили алгебраические методы к логике. Отсюда и сам термин “алгебра логики”.

Первоначально алгебра логики имела своим предметом классы (как объемы понятий), соотношения между ними по объему и связанные с этим операции над ними. Поэтому исследования в области теории множеств сыграли существенную роль в становлении алгебры логики. Впоследствии основным предметом алгебры логики стало изучение свойств логических операций над множеством высказываний, рассматриваемых лишь со стороны их логических значений: исследуются равносильности между формулами, приведение к нормальным формам, минимизация формул и т.д.

Постепенно были выделены основные свойства (классических) логических операций в виде некоторого количества тождеств (равносильностей). В совокупности эти тождества образовали конструкцию под названием “булева алгебра”. Изящной аксиоматизацией класса булевых алгебр являются пары тождеств из раздела 5: (II), (III), (IV), (V) и (B1), (B2). Одно из тождеств (V) выводимо. Таким образом, булева алгебра есть результат алгебраической формализации классической логики высказываний.

Несмотря на простоту формулировки булевы алгебры исключительно богаты по своему содержанию и давно превратились в самостоятельный раздел абстрактной алгебры. Они нашли самое широкое применение в логико-математических исследованиях, в области инженерии контактно-релейных схем, компьютерных наук, аксиоматической теории множеств, теории моделей и в других областях науки и математики.

Результатом алгебраической формализации логики предикатов явились “цилиндрические алгебры”, введенные в 1961 г. Л. Хенкиным и А. Тарским.

В алгебраизации логики особую роль сыграла оригинальная идея А. Линденбаума (1926/27), который предложил рассматривать формализованный пропозициональный язык как универсальную алгебру с операциями, соответствующими логическим связкам этого же языка. Но самое главное, затем строится логическая матрица из формул и логических связок, которые составляют само логическое исчисление. Полное признание этот метод получил в 40-е годы в терминологии “алгебры Линденбаума”, или “алгебры Линденбаума–Тарского”.

Постепенно алгебраизация логики привела к появлению нового термина “алгебраическая логика”, который стал названием монографии П. Халмоша, где методы и аппарат универсальной алгебры стали систематически применяться к изучению логики. В следующем году выходит “Математика метаматематики”, а затем книга Расёвой, ставшая классической, в которой алгебраические методы применяются к неклассическим логикам. Имеется обзор результатов по алгебраической логике.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...