Канальное (помехоустойчивое) кодирование.
⇐ ПредыдущаяСтр 3 из 3
Код Хэмминга. Используем код Хэмминга (7,4), т.е. блок длинной 7 символов, из которых 4 разряда – информационные и 3 – контрольные. Для построения блоков необходимо получить производящую матрицу G = (), где - единичная матрица, а - матрица, столбцы которой задаются урвнениями: G= Перемножая построчно G с блоком информационной комбинации и складывая затем строки по модулю 2, получаем кодовую комбинацию: ИК: 1110 1000 0111 0111 0111 0011 1011 1100 1110 0011 0001 0000 Битовая скорость R равна: ,
где m – разрядность. , Кодовым расстоянием d для кода, содержащего m кодовых комбинаций, является минимальное расстояние между всеми парами кодовых комбинаций. Для кода Хэмминга d=3. Кратность исправляемой ошибки: Декодирование и обнаружение/исправление ошибки. Построим проверочную матрицу Хэмминга H=(). Введем ошибку во второй разряд комбинации 1110100 1010100. Получим вектор S, путем сложения столбцов по модулю 2: Ненулевой вектор показывает что есть ошибка. Находим такой столбец в проверочной матрице, его номер указывает на номер разряда в кодовой комбинации, в котором произошла ошибка, в данном случае – во втором. Изменяем значение второго бита и получаем 1110100, далее получаем проверочную матрицу для той комбинации: Вектор S для нее: , что говорит о том, что ошибки нет и можно отбросить проверочные разряды. Код Хэмминга, заданный как циклический код. Используем код Хэмминга, заданный как циклический код с образующим полиномом G(x)=x3+x2+1.
Введем избыточность, умножая каждый полином на x3:
Деля избыточные полиномы на образующий полином, получаем кодовые полиномы:
Битовая скорость R равна: , Кратность обнаруживаемой ошибки: Кратность исправляемой ошибки: Декодирование и обнаружение/исправление ошибки. Если при делении кодированного полинома на образующий полином, остаток от деления равен 0, то ошибок нет и служебную информацию можно отбросить.
Сдвигаем вектор 0000001 влево на 4 разряда, получаем 0001000, складываем этот вектор по модулю 2 с ошибочной кодовой комбинацией, получая в результате 1110010. Переводим комбинацию в полиномиальный вид, делим на образующий полином. Остаток от деления равен 0, значит проверочные разряды можно отбросить. Кодирование с исправлением двойной ошибки. В качестве кода, исправляющего ошибку двойной кратности, выберем сверточный код. Применим 3-х разрядный сверточный кодер с векторами связи g1=111 и g2=101.Ниже представлен граф переходов этого кодера.
Переход по сплошной линии соответствует входному 0, по пунктирной – входной 1.Составим таблицу шифрования:
Построим по графу решетчатую диаграмму[1]:
Битовая скорость R равна: , Кратность обнаруживаемой ошибки: Кратность исправляемой ошибки: , где d – минимальное свободное расстояние, определяемое как метрика Хэмминга между двумя минимальными путями, сходящимися в одной точке (d=5).
Декодирование и исправление двукратной ошибки.
Выбираем последнюю ячейку, так как она содержит минимальные метрики Хэмминга для обоих случаев. Ошибочную последовательность интерпретируем как путь, с которым у нее минимальная метрика Хэмминга. Для декодирования сообщения необходимо пройти по решетчатой диаграмме, интерпретируя блок кода как значение, при котором совершается переход, т.е. последовательность 11 01 10 10 декодируем в 1 1 1 1.
Импульсная модуляция
Представим сигнал кодировкой без возврата к нулю: Достоинства метода:
Недостатки метода: Представим сигнал кодировкой с возвратом к нулю:
Достоинства метода: Недостатки метода: Представим сигнал манчестерским кодом: Достоинства метода: Недостатки метода:
Реализация импульсной модуляции в витой паре. 5-ти уровневая амплитудно-импульсная модуляция обеспечивает пропускную способность выше, чем бинарный сигнал, где каждый символ представлен одним битом (0 или 1). Так, каждый передаваемый символ представлен одним из 5ти разных уровней (-2, -1, 0, + 1, +2). Так как каждый символ может представляться 2-мя битами информации (4 уровня используется для представления 2х бит, плюс дополнительный пятый уровень используется для разработки метода поддержки коррекции ошибок (FEC)), скорость передачи данных вместе с пропускной способностью увеличивается. Распространенное четырехуровневое кодирование обрабатывает входящие биты парами. Всего существует 4 различных комбинации - 00, 01, 10, 11. Передатчик может каждой паре бит установить свой уровень напряжения передаваемого сигнал, что уменьшает в 2 раза частоту модуляции четырехуровневого сигнала, 125 МГц вместо 250 МГц, (рис.4), и следовательно частоту излучения. Пятый уровень добавлен для создания избыточности кода. В результате чего становится возможной коррекция ошибок на приеме. Это дает дополнительный резерв 6 дБ в соотношении сигнал/шум.
Реализация импульсной модуляции в коаксиальном кабеле. Растущая потребность в повышении качества передачи изображения в системах охранного телевидения обусловила необходимость разработки полностью цифровых методов передачи видеосигнала. В этом случае для передачи двоичных символов в волоконнооптических системах связи обычно используется импульсно-кодовая модуляция; "0" соответствует отсутствию, "1" - наличию оптического излучения в волокне. Использование цифровых технологий обеспечило появление систем передачи одного или нескольких видеосигналов по одному оптическому кабелю с исключительно высоким качеством, не зависящим от длины линии связи. При этом в 2-3 раза удалось снизить искажения типа "дифференциальная фаза" и "дифференциальное усиление" по сравнению с аналоговыми методами. Использование даже 8битного кодирования позволяет создать транспортную среду, удовлетворяющую требованиям ГОСТ Р 5072594 и RS250C MediumHaul Transmission. Например, цифровые кодеки серий "CFO" и "OPX" финской фирмы "Teleste" c 8битным кодированием обеспечивают отношение "сигнал/шум" не хуже 60 дБ при искажениях типа "дифференциальное усиление" - 1%, "дифференциальная фаза" - 1°. Переход к 12битному кодированию в последних разработках "Teleste" позволил создать многомодовую аппаратуру, обеспечивающую студийное качество передаваемых изображений в соответствии с CCIR601 и RS250C ShortHaul Transmission. Так, передатчики серии "CFO 121" обеспечивают в линии связи отношение "сигнал/шум" не хуже 70 дБ при искажениях типа "дифференциальное усиление" -1%, "дифференциальная фаза" - 1°. Многоканальная передача.
Частотное уплотнение
Используются канальные сигналы, частотные спектры которых располагаются в неперекрывающихся частотных полосах. Формирование канальных сигналов осуществляется при помощи АМ, ЧМ или ФМ так, чтобы средние частоты спектров канальных сигналов соответствовали средним частотам отведенных полос каждого канала. В приемной части разделение каналов осуществляется набором частотных фильтров, каждый из которых пропускает спектр частот, принадлежащий только данному канальному сигналу. На рисунках показаны спектры сообщений, передаваемых по трем каналам и спектр сигнала, передаваемого по линии связи.
В многоканальных системах с временным разделением каналов (ВРК) канальные сигналы не перекрываются во времени, что обеспечивает их ортогональность. Рассмотрим один из способов формирования канальных сигналов в системе с ВРК. Сообщения λk, поступающие от источников, подвергаются дискретизации по времени так, чтобы отсчеты одного сообщения не совпадали с отсчетами другого. В соответствии с моментами отсчетов вырабатываются импульсы, параметры которых меняются в зависимости от значений сообщений сообщения в каждом отсчете. Канальные сигналы, образованные из сообщения λ1, не совпадают по времени с канальными сигналами, образованными из сообщения λ2.
Множественный доступ Для обеспечения возможности одновременного использования канала передачи данных несколькими пользователями применяют системы множественного доступа: - множественный доступ с частотным разделением — при этом каждому пользователью предоставляется отдельный диапазон частот. - множественный доступ с временным разделением — каждому пользователю предоставляется определенный временной интервал Таймслот, в течение которого он производит передачу и прием данных. - множественный доступ с кодовым разделением — при этом каждому пользователю выдается кодовая последовательность, полученная, например, с помощью фунуции Уолша. Данные пользователя накладываются на кодовую последовательность таким образом, что передаваемые сигналы различных пользователей не мешают друг другу, хотя и передаются на одних и тех же частотах. [1] Проведена селекция путей после такта t3 по алгоритму Витерби
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|