Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

С учетом температуры стенки

 

;

.

 

Удельная тепловая нагрузка со стороны воды:

 

 

Сравнивая (q1)I с (q2)I, приходим к выводу, что 91571,5>>52088, поэтому расчет температуры стенки продолжаем, задаваясь другим значением температуры стенки со стороны пара.

Второе приближение

Задаемся температурой стенки со стороны пара (tст1)II = 105 0С.

Температура пленки: 0С, тогда  = 133-105 = 28 0С

Для  = 14 0С:

 = 58,46·10-2 Вт/(м·К);

 = 999,2 кг/м3;

 = 2467,6 ·103 Дж/кг;

 = 1186 ·10-6 Па·с.

По формуле (7):

 


 Вт/(м2·К).

 

Удельная тепловая нагрузка со стороны пара:

 

Рассчитываем температуру стенки со стороны воды по формуле (9):

 

 0С.

 

При этой температуре для воды [2, табл. ХXXIX]

 

(Рrст2) = 2,158.

С учетом температуры стенки:

 

;

.

 

Удельная тепловая нагрузка со стороны воды:

 

 

И во втором приближении разница между (q1)ІІ и (q2)II более 5%

 


 

Расчет продолжаем, определяя tст1 графически по пересечению линий q1=f(tст1) и q2=f(tст2)

По найденному графически температуре (tст1)ІІІ=104,15С выполняем третий, проверочный расчет.

Температура пленки: 0С, тогда  = 133-104,5 = 28,85 0С

 

Для  = 14,425 0С:

 = 58,56·10-2 Вт/(м·К);

 = 999,15 кг/м3;

 = 2466·103 Дж/кг;

 = 1173 ·10-6 Па·с.

 

По формуле (7):

 

 Вт/(м2·К).

 

Удельная тепловая нагрузка со стороны пара:

 

 

Рассчитываем температуру стенки со стороны воды по формуле (9):

 

 0С.

 


При этой температуре для воды [2, табл. ХXXIX]

 

(Рrст2)= 2,1.

С учетом температуры стенки:

 

;

.

 

Удельная тепловая нагрузка со стороны воды:

 

 

Сравнивая (q1)III с (q2)ІІІ, приходим к выводу, что отклонение

 

 

т.е. не превышает 5%, поэтому расчет можем считать законченным.

Удельные тепловые потоки по обе стороны стенки равны (рис.2)

 


Рис. 2 Схема процесса теплопередачи

 

По формуле (7) коэффициент теплопередачи:

 

.

 

Площадь поверхности аппарата определяем по формуле (1):

 

 м2,

 

По [1, табл. 1.8] ГОСТ 15122-79 окончательно выбираем двухходовой аппарат диаметром d=325 мм, с числом труб n = 56 шт, с длиной теплообменных труб L = 4000 мм и F = 17,5 м2.

 

1.8 Обозначение теплообменного аппарата

 

1) Диаметр кожуха D = 325 мм по [1, с. 29] ГОСТ 9617-76.

2) Тип аппарата ТНВ – теплообменник с неподвижными трубными решётками вертикальный.

3) Условное давление в трубах и кожухе – 0,3 МПа.

4) Исполнение по материалу – М1.

5) Исполнение по температурному пределу – 0 – обыкновенное.

6) Диаметр трубы d= 25 мм.

7) Состояние поставки наружной трубы – Г – гладкая.

8) Длина труб L= 4,0 м.

9) Схема размещения труб – Ш – по вершинам равносторонних треугольников.

10) Число ходов – 2.

Группа исполнения – А.

Теплообменник  гр. А ГОСТ 15122-79.

 

 

Рис. 3. Вертикальный двухходовой кожухотрубчатый теплообменник

1-кожух; 2-трубная решетка; 3-трубка, 4-крышка, 5-распределительная камера

 


2. Конструктивный расчет

 

Цель конструктивного расчета теплообменных аппаратов с трубчатой поверхностью теплообмена – расчет диаметров штуцеров и выбор конструкционных материалов для изготовления аппаратов, трубных решеток, способ размещения и крепления в них теплообменных трубок и трубных решеток к кожуху; конструктивной схемы поперечных перегородок и расстояния между ними; распределительных камер, крышек и днищ аппарата; фланцев, прокладок и крепежных элементов; конструкций компенсирующего устройства, воздушников, отбойных щитков, опор и т.п [1, стр.42].

 

2.1 Выбор конструкционных материалов для изготовления аппарата

 

Материал выбирают по рабочим условиям в аппарате: температуре, давлениям, химическим свойствам теплоносителей и др. При выборе материала пользуемся рекомендациями [1, табл. 2.2] и ГОСТ 15199-79, 15120-79, 15121-79, в которых указаны материалы основных деталей в зависимости от группы материального исполнения.

Группа материального исполнения – М1. Материал: кожуха – В Ст3сп5 ГОСТ 14637-79; распределительной камеры и крышки – В Ст3сп5 ГОСТ 14637-89; трубы – сталь 10 ГОСТ 8733-87 [1, табл. 2.2].

 

2.2 Выбор трубных решеток, способ размещения и крепления в них теплообменных труб и трубных решеток к кожуху

 

Трубные решетки изготавливаются обычно цельными, вырезкой из листа. Для надежного крепления трубок в трубной решетки её толщина Sр(min) (в мм) должна быть не менее [1, с. 45]


, (11)

 

где с – прибавка для стальных трубных решеток, мм, с = 5 мм;

dн – наружный диаметр теплообменных трубок, мм, dн = 25 мм.

По формуле (11):

 

 мм.

 

Толщину трубной решетки выбираем в зависимости от диаметра кожуха аппарата и уловного давления в аппарате [1, табл. 2.3]:

 

Sр = 27 мм.

 

Размещение отверстий в трубных решетках, их шаг регламентируется для всех теплообменников ГОСТ 9929-82.

По [1, с. 46] определяем шаг при размещении труб по вершинам равносторонних треугольников: при dн = 25 мм, t = 32 мм; отверстия под трубы в трубных решетках и перегородках размещают в соответствии с ГОСТ 15118-79 [1, табл. 2.6].

Размещение отверстий в трубных решетках выбранного аппарата показано на рис. 3.

 

Рис. 4 Размещение отверстий в трубных решетках

 

Основные размеры для размещения отверстий под трубы 25 х 2 мм в трубных решетках выбираем по [1, табл. 2.7], диаметр предельной окружности, за которой не располагают отверстия под трубы:

 

D0 = 287 мм,

2R = 281 мм,

 

Число отверстий под трубы в трубных решетках и перегородках по рядам:

0 ряд – 6

1 ряд – 9

2 ряд – 8

3 ряд – 7

4 ряд – 4

Общее число труб в решетке – 56 шт.

Отверстия в трубных решетках выполняем гладкими. По ГОСТ 15118-79 под трубы с наружным диаметром 25 мм установлен диаметр 25,5 мм.

Крепление труб в трубной решетке должно быть прочным, герметичным и обеспечивать их легкую замену. Применяем для крепления труб способ развальцовки с последующей отбортовкой (рис. 4).

 

Рис.5 Крепление труб в трубной решетке развальцовкой с последующей отбортовкой

 

Конец трубы, вставленной с минимальным зазором в отверстие трубной решетки, расширяется изнутри раскаткой роликами специального инструмента, называемого вальцовкой.

По [1, табл. 2.8] в соответствии с ГОСТ 26291-94 принимаем минимальную толщину стенки корпуса S = 6 мм.

 

2.3 Выбор конструктивной схемы поперечных перегородок и расстояния между ними. Отбойники

 

Применяем внутренние поперечные перегородки с диаметрально чередующимся в них сегментными средами для поддержания расстояния между трубами (рис. 6).

 


Рис.6 Конструктивная схема поперечных перегородок

 

Диаметр отверстий для труб в перегородках 28 мм [1. с. 57]. Номинальный диаметр поперечных перегородок Dп=310 мм [1. с.58].

Неподвижные трубные решетки занимают место во впадинах фланцев корпуса и крышек (рис. 7).

 

Рис. 7 Узел крепления неподвижной трубной решетки: 1 – решетка трубная; 2 – фланец; 3 – прокладка; 4 – трубка теплообменная; 5 – кожух; 6 – крышка.

 

Для того чтобы теплообменники лучше работали, необходимо обеспечить минимальный зазор между корпусом и перегородкой. Номинальный диаметр Dп поперечных перегородок принимают в зависимости от внутреннего диаметра аппарата [1, с. 58]: Dп = 310 мм при D=315 мм. Максимальное расстояние между перегородками принимаем по [1, с. 58] равным 800 мм, а минимальная толщина перегородок [1, с. 59] 8 мм.

Взаимное расположение поперечных перегородок фиксируют несколькими стяжками между ними. Стяжки придают пучку жесткость и дополнительную прочность, обеспечивают удобства его сборки. Они представляют собой тяги из круглого прутка, пропущенные через отверстия перегородок и трубных решеток. В промежутке между перегородками надеты распорные трубки. Число стяжек принимаем в зависимости от диаметра аппарата [1, с. 59]:

диаметр стяжек – 12 мм,

число стяжек – 4.

При входе среды (пара) в межтрубное пространство теплообменника часто устанавливают отбойник, который защищает от местного износа трубы, расположенные против входного штуцера (рис. 7).

 

Рис. 8 Схема размещения отбойника

 

Отбойник выполняют в виде круглой пластины. Его размер должен быть не меньше внутреннего диаметра штуцера D1, т.е. [1, с. 59].

 

 ¸20),

D = 200+15=215 мм.

 


Отбойник не должен создавать излишнее гидравлическое сопротивление, поэтому расстояние от внутренней поверхности корпуса до отбойника должно быть [1, с. 59]:

 

 ,  мм.

 

2.4 Выбор крышек и днищ аппарата

 

Крышки и днища теплообменных аппаратов выбираем в зависимости от диаметра кожуха. Наиболее распространенной формой днищ и крышек является эллиптическая форма с отбортовкой на цилиндр (рис. 8).

 

Рис. 9 Днище эллиптическое с отбортовкой

 

По [3, табл. 16.1] выбираем размеры днища эллиптического отбортованного стального диаметром 800 мм:

 

Sd = 6 мм, Нd = 81 мм, hу = 25 мм.

 

Днище 325 х 6-25 ГОСТ 481-58 [3, табл. 16.1].

Выбранное днище используем для изготовления входной и выходной крышек аппарата.

Марка стали – 09 Г 2 С [3, табл. 16.1].

 


2.5 Расчет диаметров штуцеров, выбор фланцев, прокладок и крепежных элементов

 

Присоединение трубопроводов к теплообменным аппаратам бывает разъемным и неразъемным. Разъемное присоединение труб осуществляется при помощи фланцевых резьбовых штуцеров. При диаметре трубопроводов более 10 мм применяют фланцевые штуцеры.

Диаметр штуцера зависит от расхода и скорости теплоносителя [1, с. 64]:

 

, (12)

 

где V – объемный расход теплоносителя, м3/с;

– скорость движения теплоносителя в штуцере, м/с;

S – площадь поперечного сечения штуцера, м2, .

Скорости движения теплоносителей в штуцерах выбирают по [1, табл. 1.4], принимая их несколько большими, чем в аппарате.

Диаметр штуцера:

 

, (13)

 

Диаметр штуцеров для входа и выхода воды рассчитываем по уравнению (13), принимая скорость движения воды в штуцерах равной 2,0 м/с.

 

м.

 


Принимаем dш = 50 мм.

Диаметр штуцеров для насыщенного водяного пара и конденсата, расход которых D = 6,24·10-1 кг/с.

Тогда объемный расход пара:

 

 м3/с,

 

а конденсата:

 

 м3/с.

 

Тогда, принимая скорость пара в штуцере  м/с, получаем:

 

 м.

 

Принимаем dп = 100 мм.

Скорость конденсата в штуцере  м/с, тогда

 

 м.

 

Принимаем dк = 32 мм.

Принимаем штуцера со стальными плоскими приварными фланцами с соединительным выступом (тип 1 – рис. 10).


Рис. 10 Фланец для штуцеров

 

Выбираем по Dу и ру = 0,6 МПа [3, табл. 21.9].

Основные размеры фланцев:

· фланцы штуцеров для ввода и вывода воды – Фланец 50-3 ГОСТ 1255-67: Dу = 50 мм, Dб =110 мм, Dф = 140 мм, h = 13 мм, z = 4 шт, dб =12мм;

· фланец штуцера для ввода водяного пара – Фланец 100-3 ГОСТ 1255-67: Dу =100 мм, Dб = 170 мм, Dф = 205 мм, z = 4 шт, h = 15 мм, dб = 16 мм;

· фланец штуцера для вывода конденсата – Фланец 30-3 ГОСТ 1255-67: Dу =32 мм, Dб = 90мм, Dф = 120 мм, h = 15 мм, z = 4 шт, dб = 18 мм.

Для присоединения крышек к корпусу аппарата используем тип 2 диаметром 325 мм (рис. 10).

 

Рис. 11 Фланец для аппарата

 

По [3, табл. 21.9] выбираем основные размеры фланцев для аппарата: фланец I-325-3 ГОСТ 1235-67: Dб = 395 мм, Dф = 435 мм, h = 20 мм, dб = 20 мм, z = 12т; прокладка – паронит ГОСТ 481-80.

 


2.6 Проверка необходимости установки компенсирующего устройства

 

Жесткое крепление трубных решёток к корпусу аппарата и труб в трубной решетке обуславливает возникновение температурных усилий в трубах и корпусе (кожухе) при различных температурах их направления и может привести к нарушению развальцовки труб в решетках, продольному изгибу труб и другим неблагоприятным явлениям.

В случае если трубы нагреваются сильнее, чем кожух, они становятся длиннее кожуха и давят на трубные решетки, стремясь удлинить и сам корпус (кожух). Если напряжения, возникающие при этом в материале трубок и кожуха, превышают допустимые, то появляется необходимость установки компенсирующего устройства (линзы, плавающей головки и т.п.).

По данным [1 табл.1.7] допускаемая разность температур кожуха и труб (не требующая установки компенсирующего устройства) при давлении Рy  1,6 МПа составляет 60 оС.

Для рассматриваемого теплообменного аппарата температура стенки трубок

 

 0С.

 

(см. подраздел 1.7), а минимальная температура кожуха может быть принята равной температуре пара, т.е. tст (к) = 133 оС.

Разность температур кожуха и трубок

 

 0С,

 

следовательно, установка компенсирующего устройства не требуется.

 


2.7 Опоры аппарата

 

Химические аппараты устанавливают на фундаменты или специальные несущие конструкции при помощи опор. Тип опоры выбирают в зависимости от конструкции оборудования, нагрузки и способа установки. При установке вертикальных аппаратов широко применяются лапы на полу или на фундаментах. При наличии нижних опор аппарат устанавливают на три или четыре точки, при подвеске между перекрытиями – на три лапы и более.

Расчетную нагрузку, воспринимаемую опорой аппарата, определяют по максимальной силе тяжести его в условиях эксплуатации или гидравлического испытания (при заполнении аппарата водой) с учетом возможных дополнительных внешних нагрузок от силы тяжести трубопроводов, арматуры и т. д. Вес аппарата (с жидкостью) делится на число "лап", и по допустимой нагрузке на опору выбирают ее основные размеры по [1, табл. 2.13].

Принимаем число лап равным 3, а допустимую нагрузку равную 4000 Н. По [1, табл. 2.13] выбираем основные размеры опор вертикального аппарата при допустимой нагрузке 4000 Н: a=75 мм, a1=95 мм, b=95 мм, с=20 мм, c1=50 мм, h=140 мм, h1=10 мм, S1=5 мм, k=15 мм, k1=25 мм, d=12 мм.

 

Рис. 12 Опора вертикального аппарата


3. Гидравлический расчет

 

Цель гидравлического расчета – определение величины сопротивлений различных участков трубопроводов и теплообменника и подбор насоса, обеспечивающего заданную подачу и рассчитанный напор при перекачке воды.

Теплоносители должны подаваться в теплообменный аппарат под некоторым избыточным давлением для того, чтобы преодолеть гидравлическое сопротивление аппарата и системы технологических трубопроводов за аппаратом, переместить теплоноситель из одной точки пространства в другую (например, поднять его) и иметь возможность сообщить ему дополнительную скорость. При этом теплоноситель должен обладать достаточной энергией в заданной точке технологической схемы.

Потери энергии жидкостью и газами при их движении, обусловленные внутренним трением, определяют величину гидравлического сопротиления [1, с. 79].

 

3.1 Расчет гидравлических сопротивлений трубопроводов и аппаратов, включенных в них

 

Теплообменные аппараты включаются в трубопроводы, входящие в состав насосных установок, образующих технологические схемы различных пищевых или химических отраслей промышленности. Расчету принадлежит схема насосной установки, предлагаемая в задании на проектировании.

Различают два вида гидравлических сопротивлений (потерь напора): сопротивление трения и местные сопротивления:  и . Для расчета потерь напора по длине пользуются формулой Дарси-Вейсбаха [2]:

 


,

 

где  - гидравлический коэффициент трения;

 - длина трубопровода, по которому протекает теплоноситель, м;

d – диаметр трубопровода, м;

 - скоростной напор,м.

Для расчета потерь напора в местных сопротивлениях применяют формулу Вейсбаха:

 

,

 

где  - коэффициент местных сопротивлений;

 - скоростной напор за местным сопротивлением.

 

3.1.1 Разбивка трубопровода насосной установки на участки:

Гидравлическому расчету подлежит схема, представленная на рис. 12.

 

Рис. 12 – Схема насосной установки

1 –емкость; 2 – насос; 3 – теплообменник; 5 – стерилизуемый аппарат.


Трубопровод состоит из всасывающей и напорной линий. Всасывающая линия – трубопровод от нижней части емкости до насоса. Напорная линия – участок трубопровода от насоса до теплообменника, теплообменник 3, участок от теплообменника 3 до стерилизуемого аппарата 4.

 

3.1.2 Определение геометрических характеристик участков трубопровода, скоростей и режимов движения в них теплоносителя

Диаметры всасывающего и напорного трубопроводов определим из уравнения расхода (12), принимая по [1, табл. 1.4] скорость во всасывающем трубопроводе м/с, а в напорном –  м/с.

 

 м.

 

По ГОСТ 8732-78 [4, таб. 2.34] выбираем трубу для всасывающего трубопровода диаметром 70 мм.

Скорость движения воды на всасывающем участке трубопровода:

 

 м/с,

 

а режим движения

 

 – турбулентный, так как Re>104 [6, с.43].

 

где м2/с – кинематический коэффициент вязкости при t=140С.


 м

 

По ГОСТ 8732-78 [4,таб. 2.34] выбираем трубу для напорного трубопровода диаметром 50 мм.

Скорость движения воды на напорном участке трубопровода

 

 м/с.

 

Режим движения воды на напорном участке трубопровода от насоса до теплообменника

 

 – турбулентный, так как Re>104 [6, с. 43].

 

Режим движения воды на напорном замкнутом участке трубопровода, включающего теплообменник и стерилизуемый аппарат.

 

 - турбулентный, так как Re>104,

 

где м2/с - кинематическая вязкость воды при t = 92°С

 

3.1.3 Расчет сопротивлений трубопроводов и аппаратов, включенных в них

Всасывающий участок трубопровода

При турбулентном режиме движения гидравлический коэффициент трения  может зависеть и от числа Рейнольдса, и от величины шероховатости трубы.

Рассчитаем гидравлический коэффициент трения  для гидравлически гладких труб по формуле Блазиуса:

 

. (14)

.

 

Проверим трубу на шероховатость, рассчитав толщину вязкого подслоя  и сравнив ее с величиной абсолютной шероховатости стальной бесшовной новой трубы: ,

 

 м,

 

, значит, труба гидравлически гладкая и . На всех остальных участках трубопровода будем считать трубы гидравлически гладкими.

По формуле Дарси-Вейсбаха

 

, (15)

 м.

 

Согласно схеме насосной установки (рис. 12) на всасывающей линии имеются следующие местные сопротивления: два плавных поворота на 90 ,[1, табл. 3.3]. Следовательно, , а по формуле Вейсбаха:


 , (16)

 

где  – коэффициент местных сопротивлений;

 – скоростной напор за местным сопротивлением.

 

 м.

 

Суммарные потери напора на всасывающем участке трубопровода:

 

м.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...