Теоретические основы теплообмена
РАСЧЕТНО – ПОЯСНИТЕЛЬНАЯ ЗАПИСКА к курсовой работе по процессам и аппаратам химических технологий на тему "Подбор теплообменника для проведения процесса охлаждения и конденсации пара толуола" Разработал студент 3 курса инженерно-экономического факультета специальности 1-43 01 06 02 Стригельский А. В. Руководитель Калишук Д. Г.
Минск 2005 Содержание Введение 1. Литературный обзор 1.1 Теоретические основы теплообмена 1.2 Основные типы теплообменников 1.2.1 Назначение и классификация теплообменных аппаратов 1.2.2 Обзор типовых теплообменных аппаратов 1.3 Современное аппаратурно-технологическое оформление процесса теплообмена 2. Расчет холодильника первой ступени 2.1 Определение тепловой нагрузки 2.2 Определение расхода и тепловой нагрузки воздуха 2.3 Вычисление средней разности температур теплоносителей 2.4 Нахождение ориентировочной поверхности теплообмена Fор и выбор рассчитываемого теплообменника 2.5 Расчет коэффициента теплопередачи K 2.6 Расчёт гидравлического сопротивления теплообменника 3. Расчет конденсатора паров толуола 3.1 Определение тепловой нагрузки 3.2 Определение тепловой нагрузки для второго теплоносителя ─ жидкого толуола и его расхода 3.3 Вычисление средней разности температур теплоносителей 3.4 Нахождение ориентировочной поверхности теплообмена Fор и выбор рассчитываемого теплообменника 3.5 Уточненный расчет поверхности теплопередачи 3.6 Расчёт гидравлического сопротивления теплообменника Заключение Список использованных литературных источников Приложение А Приложение Б
Введение
Современная химическая промышленность в Беларуси развивается с 60-х годов в комплексе с нефтеперерабатывающими и нефтехимическими предприятиями. Интенсивному развитию в республике этой отрасли способствовал ряд благоприятных факторов: большая потребность народного хозяйства в химической и нефтехимической продукции и высокая эффективность её применения в промышленности и сельском хозяйстве; открытие богатых запасов калийных солей на юге Минской области и нефтяных месторождений в Гомельской области; разветвлённая сеть железных и автомобильных дорог.
Начиная с 1958 года, в республике осуществляется развёрнутое строительство новых, расширение и реконструкция действующих химических предприятий. Химическая промышленность стала одной из ведущих отраслей хозяйства, охватывающей многочисленные производства разнообразных неорганических и органических продуктов, имеющих важное значение. Возникли и получили промышленное применение процессы адсорбции, экстракции, молекулярной дистилляции и др. Современная химическая промышленность насчитывает множество разнообразных производств, часто сильно различающихся химической природой и физическими свойствами исходных веществ, промежуточных и конечных продуктов, а также характером и условиями протекания технологических процессов. Несмотря на перечисленные различия, число элементарных процессов, повторяющихся в разных сочетаниях во всех химических производствах, едва достигает двадцати. Из этого ограниченного числа элементарных процессов или из некоторой их части, но в различной последовательности и при разных рабочих условиях строится технология любого химического производства.
Литературный обзор Теоретические основы теплообмена
При тепловых процессах тепло передаётся от одного вещества к другому. Для самопроизвольного переноса тепла одно из этих веществ должно быть более нагрето, чем другое. Вещества, участвующие в процессе перехода тепла (теплообмен), называются теплоносителями. Вещество с более высокой температурой, которое в процессе теплообмена отдаёт тепло, называется горячим теплоносителем, а вещество с более низкой температурой, воспринимающее тепло, холодным теплоносителем.
Существуют два основных способа проведения тепловых процессов: путём непосредственного соприкосновения теплоносителей и передачей тепла через стенку, разделяющую теплоносители. При передаче тепла непосредственным соприкосновением теплоносители обычно смешиваются друг с другом, что не всегда допустимо; поэтому данный способ применяется сравнительно редко, хотя он значительно проще в аппаратурном оформлении. При передаче тепла через стенку теплоносители не смешиваются, и каждый из них движется по отдельному каналу; поверхность стенки, разделяющей теплоносители, используются для передачи тепла и называется поверхностью теплообмена. Различают установившийся и неустановившийся процессы теплопередачи. При установившемся (стационарном) процессе температуры в каждой точке аппарата не изменяются во времени, тогда как при неустановившемся (нестационарном) процессе температуры изменяются во времени. Установившиеся процессы соответствуют непрерывной работе аппаратов с непрерывным режимом; неустановившиеся процессы протекают Передача тепла от одного тела к другому может происходить посредством теплопроводности, конвекции и лучеиспускания. Передача тепла теплопроводностью осуществляется путём переноса тепла при непосредственном соприкосновении отдельных частиц тела. При этом энергия передаётся от одной частицы к другой в результате колебательного движения частиц, без их перемещения друг относительно друга. Передача тепла конвекцией происходит только в жидкостях и газах путём перемещения их частиц. Перемещение частиц обусловлено движением всей массы жидкости или газа (вынужденная или принудительная конвекция), либо разностью плотностей жидкости в разных точках объёма, вызываемой неравномерным распределением температуры в массе жидкости или газа (свободная, или естественная, конвекция).
Конвекция всегда сопровождается передачей тепла посредством теплопроводности. Передача тепла лучеиспусканием происходит путём переноса энергии в виде электромагнитных волн. В этом случае тепловая энергия превращается в лучистую энергию (излучение), которая проходит через пространство и затем снова превращается в тепловую при поглощении энергии другим телом (поглощение). Рассмотренные виды передачи тепла редко встречаются в чистом виде; обычно они сопутствуют друг другу (сложный теплообмен). Так при передаче тепла через стенку перенос тепла от горячего теплоносителя к стенке и от стенки к холодному теплоносителю осуществляется конвекцией, а через стенку – путём теплопроводности. Теплообменными аппаратами, или теплообменниками, называются устройства для передачи тепла от одних сред (горячих теплоносителей) к другим (холодным теплоносителям). В химической технологии теплообменные аппараты применяются для нагревания и охлаждения веществ в различных агрегатных состояниях, испарения жидкостей и конденсации паров, перегонки и сублимации, абсорбции и адсорбции, расплавления твёрдых тел и кристаллизации, отвода и подвода тепла при проведении экзо- и эндотермических реакций и т. д. соответственно своему назначению теплообменные аппараты называют подогревателями, холодильниками, испарителями, конденсаторами, дистилляторами, сублиматорами, плавителями и т. п. Количество тепла, передаваемого в единицу времени от одного тела к другому, называется тепловым потоком, и выражается в Дж/сек или Вт, т. е. единицах мощности. При теплообмене между теплоносителями происходит уменьшение энтальпии (теплосодержания) горячего теплоносителя и увеличение энтальпии холодного теплоносителя. Пусть количество горячего теплоносителя, его начальная и конечная энтальпия равны соответственно G кг/сек I1 и I2 Дж/кг, а количество холодного теплоносителя и его начальная и конечная энтальпия g кг/сек i1 и i2 Дж/кг.
Примем также, что количество тепла, передаваемое от горячего теплоносителя к холодному, составляет Q Вт (эта величина называется тепловой нагрузкой аппарата), а потери тепла в окружающую среду равны Qn Вт. Тогда уравнение теплового баланса запишется в виде:
G·I1+g·i1 = G·I2 + g·i2 + Qn, (1)
Произведя перегруппировку, получим:
G·(I1 – I2) = g·(i2 – i1) + Qn, (2) Величина Qгор = G·(I1 – I2) представляет собой количество тепла, отданного горячим теплоносителем, а величина Qхол = g·(i2 – i1) количество тепла, сообщённое холодному теплоносителю. Таким образом:
Qгор = Qхол + Qn, (3)
Т. е. тепло, отданное горячим теплоносителем, частично передаётся холодному теплоносителю и частично расходуется на компенсацию потерь в окружающую среду. В теплообменных аппаратах потери тепла обычно невелики (не более 2 – 3 %) и ими можно пренебречь. Тогда уравнение теплового баланса примет вид:
Q = Qгор = Qхол, (4)
или
Q = G·(I1 –I2) = g·(i2 – i1), (5)
Расчет теплообменного аппарата включает определение необходимой поверхности теплопередачи, выбор типа аппарата и нормализованного варианта конструкции, удовлетворяющих заданным технологическим условиям оптимальным образом. Необходимую поверхность теплопередачи определяют из основного уравнения теплопередачи:
F = Q/(K·∆tcp), (6) Тепловую нагрузку Q в соответствии с заданными технологическими условиями находят из уравнения теплового баланса для одного из теплоносителей: — если агрегатное состояние теплоносителя не меняется — из уравнения
Q = Gi·ci·[ti н - ti k], i =1,2, (7)
— при конденсации насыщенных паров без охлаждения конденсата или при кипении — из уравнения
Q = Gi·ri , i = 1,2, (8)
— при конденсации перегретых паров с охлаждением конденсата
Q = G1·(I1н – c1·t1k), (9)
где I1н — энтальпия перегретого пара Дж/кг. Если агрегатное состояние теплоносителя не меняется, его среднюю температуру можно определить как среднеарифметическую между начальной и конечной температурами:
ti = (tiн + tik)/2, i = 1,2, (10)
Более точное значение средней температуры одного из теплоносителей можно получить, используя среднюю разность температур:
ti = tj ± ∆tcp, (11) где tj — среднеарифметическая температура теплоносителя с меньшим перепадом температуры вдоль поверхности теплообмена, °С. При изменении агрегатного состояния теплоносителя его температура постоянна вдоль всей поверхности теплопередачи и равна температуре кипения (или конденсации) зависящей от давления и состава теплоносителя.
Для протекания процесса передачи тепла необходимо наличие некоторой разности температур между горячим и холодным теплоносителями. Эта разность температур является движущей силой процесса теплопередачи и называется температурным напором. Если Т — температура горячего теплоносителя, а t — температура холодного теплоносителя в °С, то температурный напор:
q = T – t, (12)
Чем больше температурный напор, тем выше скорость передачи тепла, причём количество тепла, передаваемого от горячего теплоносителя к холодному, пропорционально поверхности теплообмена F (м2), температурному напору q и времени τ, с:
Q = K·F·q·τ, (13)
где K — коэффициент теплопередачи, Вт/м2∙К. Если тепло переносится путём теплопроводности через стенку, то, согласно закону Фурье, количество передаваемого тепла пропорционально поверхности F, разности температур между обеими поверхностями стенки (qст. = tст.1-tст.2),времени τ и обратно пропорционально толщине стенки δ:
Q = [λ·F(tст1 – tст2)·τ]/δ = (λ·F·qст.·τ)/δ, (14) где tст1 и tст2 — температура поверхностей стенки; λ – коэффициент теплопроводности, Вт/(м∙К).
Воспользуйтесь поиском по сайту: ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|