Индекс общности для количественных данных
По мнению многих авторов [Песенко, 1982; Мэгарран, 1992], наиболее приемлемо использование в экологических исследованиях коэффициента Серенсена: , где aN – общее число особей на участке А; bN – общее число особей на участке В; jN – сумма наименьших из двух обилий видов, встреченных на обоих участках. Так, если 12 особей вида были найдены на участке А и 29 особей того же вида на участке В, подсчитывая jN, следует взять величину 12. Графический анализ бета-разнообразия Группирование и классификация выборок является следующим этапом в анализе бета-разнообразия. Эти процедуры выполняются на основе преобразования матриц, каждый элемент которой – это показатель сходства между двумя выборками. Неориентированные и ориентированные графы Для эффективного выделения скоплений объектов существуют методы сетевого анализа. Сетевой анализ матрицы оценок сходства между объектами заключается в построении некоторых типов графов, т.е. диаграмм, где объекты изображены в виде точек (кружков) – вершин графа, которые соединяются или не соединяются линиями, называемыми ребрами графа. Степень соответствия между объектами отражается в графах или характером взаимного расположения точек, или длиной и другими особенностями линии, соединяющих точки. При анализе матриц сходства обычно используются «неориентированные графы», в которых линии, соединяющие вершины графа, не имеют направления. Реже применяются «ориентированные графы», в которых вершины соединены стрелками. Дендрит – один из типов неориентированного графа. Он может быть двух типов: минимальное древо (матрица включает оценки различий между объектами) или максимальное древо (используются меры сходства).
Дендрит – это ломаная линия, которая может ветвиться, но не содержит циклов. Построение дендрита заключается в нахождении для каждого объекта наиболее сходного с ним объекта и соединении их линией. В результате получается ряд отрезков, в том числе и разветвленных. Построить дендрит (рис. 5.8.1) можно с помощью матрицы сходства выборочных совокупностей, например (A–Е), вычисленной на основе индекса сходства Жаккара (табл. 5.8.1). Для этого последовательно соединяем две наиболее сходные выборки Г и Д (0,90) отрезком. Следующая по силе величина сходства 0,85 обнаружена между выборками Г и В. Поэтому выборку В можно присоединить отрезком к уже построенной ветке Д – Г и т. д. Таблица 5.8.1 Матрица сходства выборочных совокупностей
Основной недостаток этого графика – потеря информации, заключенной в матрице оценок сходства, в результате использования только немногих (максимальных для каждого объекта) значений показателя соответствия. Рис. 5.8.1. Последовательные этапы построения дендрита на основе матрицы сходства выборок
Плеяды Терентьева Одним из видов графического анализа сходства выборок может быть построение плеяд Терентьева. Этот тип графика, в отличие от дендрита, учитывает всю матрицу сходства. Плеяды Терентьева (рис. 5.8.2) также можно построить с помощью матрицы фаунистического сходства, вычисленной на основе индекса сходства Жаккара (табл. 5.8.1). Этот тип графика является неориентированным графом. На нем все объекты могут быть соединены линиями, отражающими связи и меру сходства объектов. Толщина или характер линий соответствуют определенному интервалу значений индекса сходства.
Рис. 5.8.2. Один из типов неориентированного графа – плеяд Терентьева, построенный на основе матрицы сходства выборок, где величины индекса сходства: 1 – [0,7: 0.9]; 2 – [0,4; 0,7]; 3 – [0,2: 0,4] Другой графический вариант плеяд Терентьева показывает взаимосвязи между выборками на разных уровнях сходства: 0,8, 0,5 и 0,2 (рис. 5.8.3). Рис. 5.8.3. Один из типов плеяд Терентьева. Взаимосвязи между объектами показаны на уровнях сходства 0,8. 0,5 и 0,2 На уровне сходства 0,8 есть взаимосвязь между объектами Г и В, Г и Д, а также А и Б. На уровне сходства 0,5 прибавляются взаимосвязи между объектами Д и А, Г и Е, Г и Б, А и Е, Б и Е и т. д.
Воспользуйтесь поиском по сайту: ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|