Построение прямой аппроксимирующей свойства тренда с помощью МНК
Реферат
В отчете содержится: 24 формулы, 10 рисунков. Ключевые слова: тренд прогноза, логнормальный закон, шум, критерий χ2-Пирсона, проверка гипотез, оценки расхождения. Целью данной работы было исследование точности прогнозирования случайного процесса с использованием метода наименьших квадратов. Для этого проводился машинный эксперимент с использованием программы Mathcad 14. Основой для построения случайной функции являлась линейная функция, на которую был наложен случайный шум, распределенный по логнормальному закону с параметрами М[шума]=0 (математическое ожидание шума) и D[шума]=D (дисперсия шума). После чего полученная случайная функция аппроксимировалась линейным трендом, а также исследовалось расхождение между трендом и прогнозом с последующей оценкой близости распределения расхождений наблюдений и распределения сгенерированного шума по критерию χ2-Пирсона. Определения и формулы
Математическим ожиданием P(ξ=xi) дискретной случайной величины ξ называется сумма парных произведений всех возможных значений случайной величины на соответствующие им вероятности, т.е:
, (1)
где хi – значение случайной величины, pi – вероятность этого значения, n – общее число значений. Математическим ожиданием P(ξ=xi) непрерывной случайной величины ξ с плотностью распределения φ(x) называется число, определяемое равенством:
, (2)
где φ(x) – плотность распределения случайной величины. Дисперсией (рассеянием) случайной величины называется математическое ожидание квадрата ее отклонения от ее математического ожидания:
(3)
Для непрерывной случайной величины формула (3) будет представлена в виде: (4)
Среднее квадратичное отклонение(СКО) – это статистическая величина, описывающая разброс значений изучаемой величины вокруг ее ожидаемого значения:
(5)
В математической статистике оперируют оценками числовых характеристик, которые ищутся по случайной выборке. В отличие от самих параметров, оценки содержат элемент случайности. К оценкам параметров предъявляют определенные требования: а) состоятельность – оценка, соответствующая этому требованию, с увеличением объема выборки сходится по вероятности к самому параметру; б) несмещенность – математическое ожидание такой оценки равно оцениваемому параметру; в) эффективность – дисперсия эффективной оценки минимальна. Оценка математического ожидания ищется по формуле:
, (6)
где n – объем случайной выборки. Оценка, вычисленная по формуле (6), называется так же статистическим средним. Оценка дисперсии вычисляется по формуле:
, (7) где m – оценка математического ожидания случайной величины. Оценка С.К.О. вычисляется по формуле:
, (8)
т.е. корень квадратный из оценки дисперсии. При генерации шума мы используем два закона: нормальное и логнормальное распределение. Нормальный закон: Нормальным называется распределение вероятностей непрерывной случайной величины, которое описывается плотностью вероятности:
(9)
Функция распределения F(x) в рассматриваемом случае принимает вид:
(10)
График 1 – распределение плотности вероятности нормального закона:
Рисунок 1. Плотность вероятности нормального закона
Говорят, что случайная величина X имеет логнормальное распределение с параметрами μ, σ, если X = exp(Y), где Y имеет нормальное распределение с параметрами μ, σ. Случайная величина с логнормальным распределением является непрерывной, и принимает только положительные значения. Графики плотности (привязан к левой вертикальной оси ординат) и функции (привязан к правой оси ординат) логнормального распределения с параметрами μ = 0, σ = 0.7 приведен на следующем рисунке 2:
Рисунок 2. Логнормальное распределение Плотность распределения логнормального закона:
(11)
Функция распределения:
(12) Для определения степени расхождения теоретической кривой и статистических данных пользуются критериями согласия. Наиболее часто для проверки гипотезы о законе распределения используются 2 критерия: критерий λ-Колмогорова и критерий χ2-Пирсона. Расчетное значение для критерия χ2-Пирсона вычисляется по формуле:
, где (13) – (14)
вероятность попадания в интервал разбиения с номером i, mi – число значений функции в интервале разбиения, m, σ – математическое ожидание и с.к.о. случайной величины X, Φ* – интеграл вероятностей. Чтобы определить функциональную зависимость между величинами по результатам наблюдений, используем метод наименьших квадратов (МНК): Пусть из опыта получены точки:
x1, y1, xn, yn
Требуется найти уравнение прямой y=ax+b (15), наилучшим образом согласующейся с опытными точками. Пусть мы нашли такую прямую. Обозначим через δi расстояние опытной точки от этой прямой (измеренное параллельно оси y). Из уравнения (15) следует, что:
(16)
Чем меньше числа по абсолютной величине, тем лучше подобрана прямая (15). В качестве характеристики точности подбора прямой (15) можно принять сумму квадратов:
(17)
Покажем, как можно подобрать прямую (15) так, чтобы сумма квадратов S была минимальной. Из уравнений (16) и (17) получаем:
(18)
Условия минимума S будут равны для линейной функции:
(19) (20)
Уравнения (19) и (20) можно записать в таком виде: (21) (22)
По уравнениям (21) и (22) легко найти a и b по опытным значениям xi и yi. Прямая (15), определяемая уравнениями (21) и (22), называется прямой, полученной по методу наименьших квадратов (этим названием подчеркивается то, что сумма квадратов S имеет минимум). Уравнения (21) и (22), из которых определяется прямая (15), называются нормальными уравнениями.
Введение
В качестве тренда процесса был выбран линейный тренд вида
Y= at+b, (23)
где а =1, b =2. Тренд процесса показан на рисунке 3.
Рисунок 3. График тренда
График прямой с учетом сгенерированного шума по логнормальному закону выглядит так:.
Рисунок 4. График прямой с учетом шума. Наша задача в курсовом проекте заключается в определении насколько сильно шум влияет на прогнозирование. Для этого мы определяем расхождения между трендом и прогнозом и оцениваем степень расхождения из-за шума по критерию Пирсона Построение прямой аппроксимирующей свойства тренда с помощью МНК
Наша ошибка сгенерирована по логнормальному закону с математическим ожиданием равным 0 и дисперсией равной 1. Гистограмма распределения шума представлена на рисунке 5.
Рисунок 5. (Гистограмма распределения значений шума по интервалам).
С помощью формул (21) и (22) вычислим коэффициенты линейного уравнения тренда с учетом шума с помощью метода МНК:
По найденным коэффициентам строим график прямой, которая аппроксимирует основные свойства линейного тренда. График показан на рисунке 6:
Рисунок 6. (Прямая, построенная по методу наименьших квадратов).
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|