Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Пути осуществления индивидуального подхода при изучении математики в начальной школе




Учащиеся начальных классов имеют различный уровень подготовки по математике, неодинаковые успехи в усвоении знаний, умений и навыков, проявляют различный интерес к математике как учебному предмету. Учитывая это, учитель должен вести обучение с учетом указанных индивидуальных особенностей учащихся. Такая работа с включением приемов, характерных для проблемного обучения, должна осуществляется каждым учителем на уроках математики.

Существует три последовательных качественных уровнях проблемного обучения.

уровень. Учитель ставит проблему, формулирует ее, указывая на конечный результат; ученики самостоятельно ведут поиски решения этой проблемы, зная окончательный результат.уровень. Учитель только указывает на проблему, учащиеся формулируют и решают ее, причем конечный результат заранее им неизвестен.уровень. Ученики самостоятельно ставят проблему, формулируют ее и исследуют возможности и способы ее решения.

Для учащихся, более подготовленных по математике, интересующихся ею, обладающих известной долей самостоятельности в работе, в проблемных заданиях с помощью индивидуальных карточек нужно указывать конечную цель и прилагать информацию о том, на какие основные моменты нужно обратить внимание при решении проблемы. Пути решения задач ученики разбирают самостоятельно, а их работу контролирует учитель.

Для учеников с более слабым уровнем математического развития в индивидуальных карточках-заданиях указывается последовательность операций, необходимых для поиска решения, дается определенная «канва» действий, приводящих к необходимому результату.

При подготовке к урокам, где решаются те или иные проблемы необходимо:

а) тщательный анализ содержания материала предстоящего урока;

б) учет уровня сложности нового материала и имеющегося у учеников запаса знаний для решения проблемного задания;

в) постановка конкретной психолого-методической цели урока;

г) поэтапная методическая разработка проблемного урока с учетом указанной цели;

д) до известной степени предвидение хода будущего урока, характера поиска учащимися решения, ожидаемых трудностей с тем, чтобы наметить пути их преодоления, оказать помощь учащимся.

Эффект подобного проблемного обучения математики оценивается по следующим параметрам:

а) успешность обучения (успеваемость);

б) развитие познавательной активности учащихся;

в) формирование самостоятельного мышления в условиях проблемного обучения;

г) степень развития у учеников интереса к математике

Индивидуализацию можно организовать в разнообразных формах, которые существенно зависят от индивидуальных подходов учителя, особенностей класса, возраста учащихся.

В организации коллективной и индивидуальной самостоятельной работы учащихся учителю помогают различные наборы карточек. Это могут быть подборы карточек учебных заданий различной степени трудности, которые учитель предлагает учащимся, учитывая достигнутый ими уровень усвоения новых знаний.

Особенность использования данной формы дифференциации состоит в том, что для самостоятельной работы учащемуся предлагают три варианта заданий различной степени сложности:

вариант - самый трудный

вариант - менее сложный

вариант - самый легкий.

Каждый ученик имеет возможность выбрать для себя наиболее оптимальный вариант при выполнении учебных заданий различной степени трудности. Педагоги Фоменкова М.В., Хаустова Н.И. предлагают учитывать следующее:

Действие первой ступени (сложение, умножение) более легкие для выполнения по сравнению с действиями второй ступени (вычитание, деление).

Выражения, содержащие несколько действий - более сложные по сравнению с выражениями, содержащими только одно действие (например, 48+30, 32+13-10).

Действия, содержащие большое число элементарных операций, требуют более высокого уровня развития учащихся

Ими были разработаны и проведены примеры таких заданий по темам «Сложение и вычитание в пределах 100», «Внетабличное умножение и деление», «Умножение и деление многозначных чисел». Примеры данных работ см. приложение №.

Другой набор - это карточки, особенность которых состоит в том, что кроме материала с заданиями для самостоятельной работы даны дополнительные карточки к каждой серии (С-1А С-1Б; С-2А С-2Б и т.д.)

Дополнительные карточки содержат рисунки, чертежи, указания и советы, которые должны помочь ученику, если он не может справиться самостоятельно с выполнением основного задания. При этом следует всегда помнить, что карточки с индексами А и Б самостоятельного значения не имеют. Они являются дополнительными к карточкам основной серии. Детей нужно научить работать с карточками этого вида. Получив одну (или две) дополнительную карточку, ученик должен прочитать основное задание, а потом уже карточки А и Б. Учащиеся должны ясно представить себе, что дополнительные указания и задания, содержащиеся в карточках, они должны использовать при выполнении основного задания. Более подготовленные учащиеся не нуждаются в дополнительных указаниях. Тем же учащимся, которым учитель сочтет нужным оказать некоторую помощь, он даст дополнительную карточку с индексом А, на которой дети увидят схематический рисунок, иллюстрирующий условие задачи и задание. Для многих детей, очевидно, такой помощи окажется достаточно, так как рассмотрев рисунок и ответив на поставленный вопрос, они получают ключ к решению задачи. Дети, которые подготовлены к работе слабее других, могут не справиться с заданием и при таких условиях. Для них у учителя есть другая дополнительная карточка (с индексом Б). Такое задание, конечно, в значительной мере лишает самостоятельности решения задания, так как ученику остается сделать уже не так много, но все же и в этом случае задание требует осознание способа решения, особенности вопроса задачи. Для учащихся, которые легко и быстро справились с основным заданием, в ряде карточек имеются также задания, отмеченные звездочкой (как правило эти задания более трудные, углубляющие знания детей). В тех случаях, когда такого задания нет, учитель может предложить детям составить и записать задачу, обратную данной или аналогичную ей.

Сегодня часто поднимается вопрос о необходимости совершенствования обучения младших школьников решению текстовых математических задач. Среди причин, определяющих недостаточный уровень сформированности у учащихся умений решать задачи, можно выделить следующие:

Первая заключается в методике обучения, которая долгое время ориентировала учителя не на формирование у учащихся обобщенных умений, а на «разучивание» способов решения задач определенных видов.

Вторая причина кроется в том, что учащиеся объективно отличаются друг от друга характером умственной деятельности, осуществляемой при решении задач.

Первая из указанных причин в настоящее время находит заметное отражение в печати в связи с интенсивно разрабатываемой методикой развивающего обучения математике. Но в этой главе хочется привлечь внимание ко второй из причин.

Многим учителям знакомы трудности, которые связаны с организацией на уроке фронтальной работы над текстовой задачей. Ведь в то время, когда большая часть учащихся класса только приступает к осмыслению содержания задачи вместе с учителем, другая, пусть меньшая часть, уже знает, как её решить. Одни учащиеся способны видеть разные способы решения, другим необходима значительная помощь для того, чтобы просто задачу решить. Да и потребность в мере помощи различна у разных учеников. При этом определенная часть учащихся класса так и остается недогруженной, так как предполагаемые задачи слишком для них просты. В связи с этим встает вопрос: «Как же организовать на уроке работу над задачей, чтобы она соответствовала возможностям учащихся?» Для этого потребуется изучить анализ работ психологов, который позволит выделить уровни умения решать задачи младшими школьниками.

Низкий уровень. Восприятие задачи осуществляется учеником поверхностно, неполно. При этом он вычленяет разрозненные данные, внешние, зачастую несущественные элементы задачи. Ученик не может и не пытается предвидеть ход её решения. Характерна ситуация, когда, не поняв как следует задачу, ученик уже приступает к её решению, которое чаще всего оказывается беспорядочным манипулированием числовыми данными.

Средний уровень. Восприятие задачи сопровождается её анализом. Ученик стремится понять задачу, выделяет данные и искомое, но способен при этом установить между ними лишь отдельные связи. Из-за отсутствия единой системы связей между величинами, затруднено предвидение последующего хода решения задачи. Чем более развита эта сеть, тем больше вероятность ошибочного решения.

Высокий уровень. На основе полного всестороннего анализа задачи ученик выделяет целостную систему (комплекс) взаимосвязей между данными и искомым. Это позволяет ему осуществлять целостное планирование решения задачи. Ученик способен самостоятельно увидеть разные способы решения и выделить наиболее рациональный из возможных.

Очевидно, что то обучающее воздействие, которое целесообразно для умственной деятельности высокого уровня, окажется недоступно для понимания и усвоения на низком уровне. Поэтому для повышения эффективности обучения решению задач необходимо учитывать исходный уровень сформированности этого умения у ученика (это интуитивно делает опытный учитель).

Отмеченные выше особенности умственной деятельности учащихся при решении текстовых задач позволяет определить сущность дальнейшей работы с ними на разных уровнях.

Широкие возможности для совершенствования работы над текстовой задачей имеются, как известно, в приеме моделирования. В своей работе дети учатся моделировать не только ситуацию, представленную в задаче, но и процесс рассуждения, ведущий к составлению плана решения, так называемое «дерево рассуждения» - это задача для самого высокого уровня. Для тех, кто не достиг этого уровня, предлагаются задания, которые направляют с помощью моделирования на осуществления полноценного анализа содержания задачи: на использование модели для нахождения способа решения; на осмысление каждого звена в цепи взаимосвязей «дерева рассуждений», предлагаемого в готовом виде.

Для того чтобы организовать разноуровневую работу над задачей в одно и то же время, отведенное для этого на уроке, можно использовать индивидуальные карточки-задания, которые готовятся заранее в трех вариантах (для трёх уровней). Эти карточки содержат системы заданий, связанные с анализом и решением одной и той же задачи, но на разных уровнях. В размноженном виде они предлагаются учащимся в виде печатной основы. Ученик выполняет задание письменно в специально отведенном для этого месте.

Приведем примеры таких карточек. Отметим, что из этических соображений в предлагаемой ученику карточке уровень не указывается, а различие вариантов обозначается кружками разного цвета в верхнем углу карточки.

Карточка № 1

Вариант - 1

Реши задачу:                            

Мама заготовила 16 банок вишнёвого варенья, а клубничного на 7 банок больше, чем вишнёвого. Сколько всего банок варенья заготовила мама?

Карточка № 1

Вариант - 2

Реши задачу:

Купили 15 бутылок лимонного чая, а персикового на 9 бутылок больше. Сколько всего бутылок чая купили?

Карточка № 2

Вариант - 1

Реши задачу:

Мама купила 14 молочных и 8 сливочных йогуртов. Съели 9 йогуртов. Сколько йогуртов осталось?

Карточка № 2

Вариант - 1

Реши задачу:

Купили 9 булочек с повидлом и 12 булочек с маком. За обедом съели 6 булочек. Сколько булочек осталось?

Карточка № 3

Вариант - 1

Реши задачу:

Маме 36 лет, а папе 43 года. На сколько лет мама моложе папы?

Карточка № 3

Вариант - 2

Реши задачу:

Бабушке 64 года, а дедушке 72 года. На сколько лет дедушка старше бабушки?

В заданиях намеренно как бы изолируется план решения от вычислительных действий (в практике преобладает «пошаговое» планирование как более доступное). Это сделано с целью формирования умения осуществлять целостное планирование решения задачи. Преимущество его перед «пошаговым» видится в том, что при этом внимание учащихся концентрируется на поиске обобщенного способа решения задачи вне зависимости от конкретных числовых данных, отвлекаясь от них.

Дифференцированную работу на уроке можно проводить и при работе над ошибками в решении задач.

Приведем примеры дифференцированных заданий такого рода:

Учащимся, которые успешно справляются с решением задач, предлагаются дифференцированные задания, которые связаны с увеличением объёма задач, с составлением обратных задач, с решением задач с недостающими или лишними данными, с составлением задач по данному решению.

Учащимся могут быть предложены такие задачи:

)   Коробка цветных карандашей стоит 12 копеек. Кисточка в 3 раза дешевле коробки карандашей, а книга на 28 копеек дороже, чем кисточка. Сколько стоит книга?

)   Мама купила 3 метра шёлка по 4 рубля за 1 метр и столько же метров шерсти по 7 рублей за 1 метр. Сколько денег она уплатила за всю покупку?

С учётом ошибок были составлены следующие задания для учеников, которые самостоятельно справились с решением этих задач:

.   Составь задачу по выражению

(48:8)х6

. Решите задачу: «За три стула заплатили 27 рублей. Сколько можно купить стульев на 63 рубля?».

Измени вопрос задачи так, чтобы ответ на него был найден умножением.

. На какие вопросы можно ещё ответить пользуясь данными задачи №1. Запиши эти вопросы и ответы на них

Составь обратную задачу к задаче №1 и реши её.

Для учеников, допустивших ошибки.. Со вспомогательными вопросами к задаче.

К задаче №2:

Прочитай условие задачи. Что означает: столько же метров шерсти? Запиши эти слова числом и реши задачу..C дополнительными указаниями.

К задаче №1:

Дешевле - значит меньше;

Дороже - значит больше.

Замените слова дороже и дешевле словами больше и меньше и решите задачу.. С дополнительной конкретизацией.

К задаче №1:

Коробка - 12 коп.

Кисточка - в 3 раза больше

Книга - на 28 коп. меньше

К задаче №2:

Шелк 3м по 4 руб.

Шерсть 1м по 7 руб.

Вставь в окошко нужное число и реши задачу.. С выбором решения.

К задаче №1:

Выбери решение для данной задачи:

) 12х3=36 (коп.)

) 36+28=64 (коп.)

) 12:3=4 (коп.)

) 4+28=32 (коп.)

) 12х3=36 (коп.)

) 36-28=8 (коп.). С выполнением некоторой части задания.

К задаче №1:

Закончи решение задачи

:3= 4 (коп.)

…Запиши первое действие и ответ

…4+28=… (коп.)

С вспомогательными упражнениями.

К задаче №1:

Сначала реши задачу:

а) Коробка цветных карандашей стоит 12 копеек, кисточка в 3 раза дешевле. Сколько стоит кисточка?

б) Кисточка стоит 4 копейки, а книга на 28 копеек дороже. Сколько стоит книга?

в) А теперь реши задачу №1.

Работа над текстовой задачей на уроке с помощью карточек-заданий, и дифференцированных заданий при работе над ошибками, допущенными при их решении, позволяет организовать разноуровневую работу на уроке и органично вписывается в ход урока, удобна в организации, повышает самостоятельность учащихся и позволяет формировать у них умение решать текстовые задачи на доступном им уровне сложности - это совершенствует обучение решению задач учащихся начальных классов.

Глава 2. Методы, приемы и формы индивидуального подхода к учащимся при обучении сложению и вычитанию в пределах 100

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...