Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Решение обратной задачи линейной размерной цепи

Расчёт линейной размерной цепи и выбор посадок

 

 

Выполнил

студент группы ТСП-06 Мисавирова Э.Ф.

дата 15.05.09

подпись

Проверил

доцент кафедры ОМД Еремин А.В.

 

Магнитогорск 2009


Задание

 

Таблица 1 - Исходные данные

Размер, мм

А 1 А 2 А 3 А 4 А 5 А 6 А D 1 D 2
60+0, 19 21+0,13 10-0,09 20-0,13 40-0,16 10-0,09 1+0,35 60 80

 

Рисунок 1. - Сборочная единица: 1-корпус; 2 - большая шестерня; 3-малая шестерня; 4-втулка; 5-вал; 6-шпонка

 

На рис.1 представлена сборочная единица (фрагмент коробки передач), включающая разъёмный корпус 1, состоящий из двух половин, в каждую из которых неподвижно установлена втулка 4, выполняющая функции подшипника скольжения. Во втулках установлен вал 5 с возможностью свободного вращения. На валу неподвижно с применением шпонки 6 установлена большая шестерня 2 и с возможностью свободного вращения малая шестерня 3. Режим работы сборочной единицы лёгкий.

Даны номинальные и предельные отклонения (см. таблицу исходных данных) размеров деталей, входящих в размерную цепь: А 1; А 2; А 3; А 4; А 5; А 6; А Δ. Известны также номинальные внутренний D 1 и наружный D 2 диаметры втулок.

Выполнить следующее:

решить обратную задачу линейной размерной цепи;

решить прямую задачу линейной размерной цепи;

выбрать посадки при сопряжении вала со втулками, втулок с корпусом и вала с большой и малой шестернями;

графически построить поля допусков выбранных посадок и дать характеристику посадкам;

вычертить эскизы сборочной единицы и деталей, входящих в её состав.


Реферат

 

Выполнен расчёт линейной размерной цепи на полную взаимозаменяемость с использованием метода максимума-минимума. Решена обратная (проверочная), а затем прямая (проектировочная) задачи линейной размерной цепи.

На составляющие звенья размерной цепи назначены такие допуски, которые позволяют осуществить сборку сборочной единицы без всякой дополнительной обработки деталей при сохранении служебных функций сборочной единицы.

Выбраны посадки и даны их характеристики. Приведены эскизы сборочной единицы и эскизы рабочих чертежей деталей, входящих в сборочную единицу.


Содержание

 

Введение

1. Расчет размерной линейной цепи

1.1 Решение обратной задачи линейной размерной цепи

1.2 Решение прямой задачи линейной размерной цепи

2 Выбор посадок

2.1 Графическое построение полей допусков выбранных посадок и их характеристики

3 Эскизы сборочной единицы и деталей, входящих в её состав

Заключение

Библиографический список

 


Введение

 

Взаимозаменяемость - свойства независимо изготовленных деталей, узлов и сборочных единиц машин и изделий обеспечивать возможность беспригоночной сборки (замены) сопрягаемых деталей в сборочную единицу, а сборочной единицы в изделие без дополнительной обработки при соблюдении предъявляемых к ним технических требований и сохранении функционирования изделия с заданными эксплуатационными показателями.

Нормативной базой взаимозаменяемости является стандартизация.

Взаимозаменяемость лежит в основе важнейших принципов и форм организации современного производства.

Взаимозаменяемость позволяет организовать серийное и массовое производство изделий, а также выполнять сборку и замену (ремонт) деталей на основе кооперирования их изготовления.

В масштабах хозяйства страны это даёт большой экономический эффект.

Задачей курсовой работы является определение условий выполнения полной взаимозаменяемости сборочной единицы на основе расчёта измерений размерной цепи.


Расчет размерной линейной цепи

Решение обратной задачи линейной размерной цепи

 

Обратная задача линейной размерной цепи является проверочной, или ее еще называют задачей технолога. Сущность расчета заключается в проверке обеспечения заданной точности замыкающего звена при заданных предельных размерах составляющих звеньев.

Составляем схему размерной цепи в соответствии с конструктивным исполнением сборочной единицы.

 

Рисунок 2 -Схема размерной цепи.

 

Из анализа размерной цепи следует:

А 1, А 2 - увеличивающие размеры;

А3, А4, А5, А6 - уменьшающие размеры;

А ∆ - замыкающее звено размерной цепи (зазор между фланцем втулки и торцом малой шестерни).

Из таблицы исходных данных:

 

А 1 = 60+0, 19, А 2 = 21+0,13, А3 = 10-0,09, А4 = 20-0,13, А5 = 40-0,16, А6 = 10-0,09, А = 1+0,35.

 

Для замыкающего звена заданные величины имеют следующие значения: номинальный размер [ А ∆] = 1,0мм; максимальный предельный размер [ А ∆ макс] = 1,35мм; минимальный предельный размер [ А ∆ мин] = 1,0мм, так как верхнее отклонение замыкающего звена Es (А ) = 0,35мм, а нижнее отклонение Ei (А ) = 0.

По исходным данным устанавливаем предельные отклонения составляющих звеньев.

Верхнее отклонение увеличивающих размеров:

Es (А 1) = 0, 19мм; Es (А 2) = 0,13мм;

 

Нижнее отклонение увеличивающих размеров:

Ei (А 1) = 0; Ei (А 2) = 0;

 

Верхнее отклонение уменьшающих размеров:

Es (А 3) = 0; Es (А 4) = 0;

Es (А 5) = 0; Es (А 6) = 0.

 

Нижнее отклонение уменьшающих размеров:

Ei (А 3) = - 0,09мм; Ei (А 4) = - 0,13мм;

Ei (А 5) = - 0,16мм; Ei (А 6) = - 0,09мм.

 

По исходным данным составляющих звеньев вычисляем предельные размеры замыкающего звена А ∆ макс, А ∆ мин.

Определяем номинальный размер замыкающего звена:

 

А = А j - А j= (А 1+ А 2) - (А3 + А4+ А5+ А6) = (60+21) - (10+20+40+10) =1мм.

 

Расчетное значение номинального размера замыкающего звена совпадает с заданным, следовательно, номинальные размеры составляющих звеньев назначены верно и не требуют корректировки.

Определяем верхнее и нижнее отклонения замыкающего звена.

 

Es (А ) = Es (А j) - Ei (А j) = [ Es (А 1) + Es (А 2)] - [ Ei (А 3) + Ei (А 4) + Ei (А 5) + + Ei (А 6)] = (0, 19+0,13) - (-0,09 - 0,13 - 0,16 - 0,09) = 0,79мм.

Ei (А ) = Ei (А j) - Es (А j) = [ Ei (А 1) + Ei (А 2)] - [ Es (А 3) + Es (А 4) + Es (А 5) + + Es (А 6)] = 0.

 

Определяем предельные размеры замыкающего звена:

 

А ∆ макс = А + Es (А ) =1,0 + 0,79 = 1,79мм.

А ∆ мин = А + Ei (А ) = 1,0 + 0 = 1,0мм.

 

Проводим сравнение расчетных значений предельных размеров замыкающего звена с заданными значениями по следующим условиям:

 

А ∆ макс ≤ [ А ∆ макс]; 1,79>1,35;

А ∆ мин ≥ [ А ∆ мин]; 1,0 =1,0.

 

Первое условие не выполняется, поэтому сборка невозможна с обеспечением полной взаимозаменяемости, и необходимо провести корректировку допусков составляющих размеров, т.е. решить прямую задачу размерной цепи.


Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...