Рефлекторная саморегуляция вентиляции легких с рецепторов растяжения легких (рефлекс Геринга-Брейера).
⇐ ПредыдущаяСтр 15 из 15 Рефлекторная регуляция дыхания осуществляется благодаря тому, что нейроны дыхательного центра имеют связи с многочисленными механорецепторами дыхательных путей и альвеол легких и рецепторов сосудистых рефлексогенных зон. В легких человека находятся следующие типы механорецепторов: Полагают, что эти рецепторы залегают в гладких мышцах воздухоносных путей.
Рефлексы со слизистой оболочки полости носа. Раздражение ирритантных рецепторов слизистой оболочки полости носа, например табачным дымом, инертными частицами пыли, газообразными веществами, водой вызывает сужение бронхов, голосовой щели, брадикардию, снижение сердечного выброса, сужение просвета сосудов кожи и мышц. Защитный рефлекс проявляется у новорожденных при кратковременном погружении в воду. У них возникает остановка дыхания, препятствующая проникновению воды в верхние дыхательные пути.
Раздувание легких у наркотизированного животного рефлекторно тормозит вдох и вызывает выдох. Нервные окончания, расположенные в бронхиальных мышцах, играют роль рецепторов растяжения легких. Их относят к медленно адаптирующимся рецепторам растяжения легких, которые иннервируются ми-елинизированными волокнами блуждающего нерва.
Хеморефлексы дыхания. Рог и Рсог в артериальной крови человека и животных поддерживается на достаточно стабильном уровне, несмотря на значительные изменения потребления Оз и выделение С02. Гипоксия и понижение рН крови (ацидоз) вызывают усиление вентиляции (гипервентиляция), а гипероксия и повышение рН крови (алкалоз) — понижение вентиляции (гиповентиляция) или апноэ. Контроль за нормальным содержанием во внутренней среде организма 02, СОг и рН осуществляется периферическими и центральными хеморецепторами. Адекватным раздражителем для периферических хеморецепторов является уменьшение Ро; артериальной крови, в меньшей степени увеличение Рсо2 и рН, а для центральных хеморецепторов — увеличение концентрации Н* во внеклеточной жидкости мозга. Артериальные (периферические) хеморецепто-ры. Периферические хеморецепторы находятся в каротидных и
Расо2 и рН крови только потенцируют эффект гипоксии на артериальные хеморецепторы и не являются адекватными раздражителями для этого типа хеморецепторов дыхания. Реакция артериальных хеморецепторов и дыхания на гипоксию. Недостаток С>2 в артериальной крови является основным раздражителем периферических хеморецепторов. Импульсная активность в афферентных волокнах синокаротидного нерва прекращается при Раод выше 400 мм рт. ст. (53,2 кПа). При нормоксии частота разрядов синокаротидного нерва составляет 10% от их максимальной реакции, которая наблюдается при Раод около 50 мм рт. ст. и ниже-Гипоксическая реакция дыхания практически отсутствует у коренных жителей высокогорья и исчезает примерно через 5 лет у жителей равнин после начала их апаптации к высокогорью (3500 м и выше). Центральные хеморецепторы. Окончательно не установлено местоположение центральных хеморецепторов. Исследователи считают, что такие хеморецепторы находятся в ростральных отделах продолговатого мозга вблизи его вентральной поверхности, а также в различных зонах дорсального дыхательного ядра. Наличие центральных хеморецепторов доказывается достаточно просто: после перерезки синокаротидных и аортальных нервов у подопытных животных исчезает чувствительность дыхательного центра к гипоксии, но полностью сохраняется реакция дыхания на гиперкапнию и ацидоз. Перерезка ствола мозга непосредственно выше продолговатого мозга не влияет на характер этой реакции. Адекватным раздражителем для центральных хеморецепторов является изменение концентрации Н4 во внеклеточной жидкости мозга. Функцию регулятора пороговых сдвигов рН в области центральных хеморецепторов выполняют структуры гематоэнцефали-ческого барьера, который отделяет кровь от внеклеточной жидкости мозга. Через этот барьер осуществляется транспорт 02, С02 и Н^ между кровью и внеклеточной жидкостью мозга. Транспорт СОз и H+ из внутренней среды мозга в плазму крови через структуры гематоэнцефалического барьера регулируется с участием фермента ка рбоангидразы. Дыхание при пониженном атмосферном давлении. Гипоксия Атмосферное давление понижается при подъеме на высоту. Это сопровождается одновременным снижением парциального давления кислорода в альвеолярном воздухе. На уровне моря оно составляет 105 мм.рт.ст. На высоте 4000 м уже в 2 раза меньше. В результате уменьшается напряжение кислорода в крови. Возникает гипоксия. При быстром падении атмосферного давления наблюдается острая гипоксия. Она сопровождается эйфорией, чувством ложного благополучия, и скоротечной потерей сознания. При медленном подъеме гипоксия нарастает медленно. Развиваются симптомы горной болезни. Первоначально появляется слабость, учащение и углубление дыхания, головная боль. Затем начинаются тошнота, рвота, резко усиливаются слабость и одышка. В итоге также наступает потеря сознания, отек мозга и смерть. До высоты 3 км у большинства людей симптомов горной болезни не бывает. На высоте 5 км наблюдаются изменения дыхания, кровообращения, высшей нервной деятельности. На высоте 7 км эти явления резко усиливаются. Высота 8 км является предельной для жизнедеятельности высоте организм страдает не только от гипоксии, но и от гипокапнии. В результате снижения напряжения кислорода в крови возбуждаются хеморецепторы сосудов. Дыхание учащается и углубляется. Из крови выводится углекислый газ и его напряжение падает ниже нормы. Это приводит к угнетению дыхательного центра. Несмотря на гипоксию дыхание становится редким и поверхностным. В процессе адаптации к хронической гипоксии выделяют три стадии. На первой, аварийной, компенсация достигается за счет увеличения легочной вентиляции, усиления кровообращения, повышения кислородной емкости крови и т.д. На стадии относительной стабилизации происходят такие изменения систем, организма, которые обеспечивают более высокий, и выгодный уровень адаптации. В стабильной стадии физиологические показатели организма становятся устойчивыми за счет ряда компенсаторных механизмов. Так кислородная емкость крови увеличивается не только за счет возрастания количества эритроцитов, но и 2,3-фосфоглицерата в них. За счет 2,3-фосфоглицерата улучшается диссоциация оксигемоглобина в тканях. Появляется фетальный гемоглобин, имеющий более высокую способность связывать кислород. Одновременно повышается диффузионная способность легких и возникает "функциональная эмфизема". Т.е. в дыхание включаются резервные альвеолы и увеличивается функциональная остаточная емкость. Энергетический обмен понижается, но повышается интенсивность обмена углеводов.
Гипоксия это недостаточное снабжение тканей кислородом. Формы гипоксии: 1. Гипоксемическая гипоксия. Возникает при снижении напряжения кислорода в крови (уменьшение атмосферного давления, диффузионной способности легких и т.д.). 2. Анемическая гипоксия. Является следствием понижения способности крови транспортировать кислород (анемии, угарное отравление). 3. Циркуляторная гипоксия. Наблюдается при нарушениях системного и местного кровотока (болезни сердца и сосудов). 4. Гистотоксическая гипоксия. Возникает при нарушении тканевого дыхания (отравление цианидами). Дыхание человека при повышенном давлении воздуха имеет место на значительной глубине под водой при работе водолазов или при кессонных работах. Поскольку давление одной атмосферы соответствует давлению столба воды высотой 10 м, то в соответствии с глубиной погружения человека под воду в скафандре водолаза или в кессоне поддерживается давление воздуха по этому расчету. Человек, находясь в атмосфере повышенного давления воздуха, не испытывает каких-либо дыхательных расстройств. При повышенном давлении атмосферного воздуха человек может дышать в том случае, если в его дыхательные пути поступает воздух под таким же давлением. При этом растворимость газов в жидкости прямо пропорциональна его парциальному давлению. Поэтому при дыхании воздухом на уровне моря в 1 мл крови содержится 0,011 мл физически растворенного азота. При давлении воздуха, которым дышит человек, например, 5 атмосфер, в 1 мл крови будет содержаться в 5 раз больше физически растворенного азота. При переходе человека к дыханию при более низком давлении воздуха (подъем кессона на поверхность или всплытие водолаза) кровь и ткани тела могут удержать только 0,011 мл N2/мл крови. Остальное количество азота переходит из раствора в газообразное состояние. Переход человека из зоны повышенного давления вдыхаемого воздуха к более низкому его давлению должен происходить достаточно медленно, чтобы освобождающийся азот успел выделиться через легкие. Если азот, переходя в газообразное состояние, не успевает полностью выделиться через легкие, что имеет место при быстром подъеме кессона или нарушении режима всплытия водолаза, пузырьки азота в крови могут закупорить мелкие сосуды тканей организма. Это состояние называется газовая эмболия. В зависимости от локализации газовой эмболии (сосуды кожи, мышц, центральной нервной системы, сердца и др.) у человека возникают различные расстройства (боли в суставах и мышцах, потеря сознания), которые в целом называются «кессонной болезнью».
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|