Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Короткое замыкание в цепи с резистором и катушкой





Рис. 5.2

Исследуем электромагнитные процессы в цепи, изображенной на рис. 5.2, происходящие после замыкания ключа.

Рассчитаем установившийся режим в цепи до коммутации (до замыкания ключа) и определим из него независимое начальное условие — ток в катушке в момент t = 0-, непосредственно предшествующий коммутации

i(0-) = i(0+) = E / (Rвн + R).

Найдем установившийся ток i после коммутации. Так как во вновь образованном контуре из катушки L и резистора R нет источника, то iy = 0.

Для определения свободной составляющей тока запишем по второму закону Кирхгофа уравнение электрического состояния цепи после коммутации:

.

Характеристическое уравнение имеет вид:

pL + R = 0.

Общее решение уравнения для свободной составляющей:

iсв = A ept,

где: А – постоянная интегрирования;
p = - R/L, c-1 – корень характеристического уравнения.

Записав общий вид переходного тока катушки

i = iу + iсв = A ept,

приравниваем его значение i(0+) = A в точке t = 0+ к значению i(0-), найденному в п. 1. Получаем искомую константу

A = E / (Rвн + R) = I0.

Переходный ток i = iу + iсв при этом равен

,

где τ = L / R – постоянная времени цепи.

Постоянная времени – это время, в течение которого свободная составляющая процесса уменьшается в е = 2,72 раза по сравнению с начальным значением.


Рис. 5.3

График изменения переходного тока показан на рис. 5.3.

Определим э.д.с. самоиндукции катушки

t ≥ 0.

В момент коммутации эта э.д.с. равна напряжению на сопротивлении R, а в дальнейшем уменьшается по экспоненциальному закону. На основании изложенного можно сделать следующие выводы.

1. При коротком замыкании в рассматриваемой цепи ток в ней изменяется по экспоненциальному закону, уменьшаясь от начального значения до нуля.

2. Скорость изменения тока определяется постоянной времени цепи, которая равна индуктивности катушки, деленной на активное сопротивление цепи.

3. Практически можно считать, что переходный процесс заканчивается при t ≈ (3…5)τ, когда первоначальное значение тока уменьшается по модулю на порядок.

4. Напряжение на катушке в начальный момент времени равно напряжению на активном сопротивлении:

uL(0+) = I0R.

5. С энергетической точки зрения рассматриваемый переходный процесс характеризуется расходом энергии магнитного поля катушки на тепловые потери в резисторе. Следует отметить, что сопротивление резистора влияет не на количество выделенной теплоты W, а на начальное значение напряжения катушки и длительность процесса. В самом деле

.

Включение цепи с резистором и катушкой на постоянное напряжение


Рис. 5.4

Переходный ток в цепи, изображенной на рис. 5.4, представим в виде

i = iу + iсв.

1. До коммутации тока в катушке не было, следовательно,

iL(0-) = 0.

2. Установившаяся составляющая тока после коммутации

iу = U / R.

3. Свободная составляющая тока для цепи, описываемой дифференциальным уравнением первого порядка

iсв = A e-t/τ =A ept, p = - R / L.

4. По начальным условиям определим постоянную интегрирования А и свободную составляющую тока:

i(0) = iу(0) + iсв(0); i(0) = iу(0+) + iсв(0-);

или

0 = U / R + A; A = -U / R; iсв = -U / R · e-t/τ.

Переходный ток получается в виде

i = U / R (1 - e-t/τ).


Рис. 5.5

Напряжение на катушке

.

Кривые изменения токов i, iy, iсв и напряжения на катушке uL показаны на рис. 5.5.

При включении рассматриваемого контура под постоянное напряжение ток в нем нарастает от нуля до установившегося значения. Скорость нарастания тока

изменяется по экспоненте с отрицательным показателем. В момент t = 0 эта скорость максимальна и равна U / L [А/с], со временем она падает практически до нуля, процесс выходит на установившийся режим.

В первый после коммутации момент t = 0+ ток в цепи еще равен нулю, и напряжение на катушке максимально uL = U, далее оно экспоненциально снижается до нуля.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...