Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Решение транспортной задачи




Основные шаги при решении транспортной задачи:

1. Найти начальный допустимый план.

2. Выбрать из небазисных переменных ту, которая будет вводиться в базис. Если все небазисные переменные удовлетворяют условиям оптимальности, то закончить решение, иначе к след. шагу.

3. Выбрать выводимую из базиса переменную, найти новое базисное решение. Вернуться к шагу 2.

 

Всякое неотрицательное решение систем линейных уравнений (2) и (3), определяемое матрицей , называется планом транспортной задачи. Опорным (базисным) планом Т-задачи называют любое ее допустимое, базисное решение.

Обычно исходные данные транспортной задачи записывают в виде таблицы.

Матрицу С называют матрицей транспортных затрат, матрицу X, удовлетворяющую условиям Т-задачи (2) и (3) называют планом перевозок, а переменные - перевозками. План , при котором целевая функция минимальна, называется оптимальным.

Число переменных в транспортной задаче с m пунктами отправления и n пунктами назначения равно m*n, а число уравнений в системах (2) и (3) равно m+n. Так как мы предполагаем, что выполняется условие (5), то число линейно независимых уравнений равно m+n–1. Следовательно, опорный план транспортной задачи может иметь не более m+n–1 отличных от нуля неизвестных.

Если в опорном плане число отличных от нуля компонент равно в точности m+n–1, то план является невырожденным, а если меньше – то вырожденным.

Как и для всякой задачи линейного программирования, оптимальный план транспортной задачи является и опорным планом.

Построение допустимого (опорного) плана в транспортной задаче

По аналогии с другими задачами линейного программирования решение транспортной задачи начинается с построения допустимого базисного плана. Существует несколько методов построения начальных опорных планов Т-задачи. Из них самый распространенный метод северо-западного угла и метод минимального элемента.

Наиболее простой способ его нахождения основывается на так называемом мето­де северо-западного угла. Суть метода состоит в последова­тельном распределении всех запасов, имеющихся в первом, вто­ром и т. д. пунктах производства, по первому, второму и т. д. пунктам потребления. Каждый шаг распределения сводится к попытке полного исчерпания запасов в очередном пункте про­изводства или к попытке полного удовлетворения потребно­стей в очередном пункте потребления. На каждом шаге q вели­чины текущих нераспределенных запасов обозначаются аi(q), а текущих неудовлетворенных потребностей — bj(q ). Построение допустимого начального плана, согласно методу северо-запад­ного угла, начинается с левого верхнего угла транспортной таб­лицы, при этом полагаем аi(0)= аi, bj(0)= bj. Для очередной клетки, расположенной в строке i и столбце j, рассматриваются зна­чения нераспределенного запаса в i -ом пункте производства и неудовлетворенной потребности j -ом пункте потребления, из них выбирается минимальное и назначается в качестве объема перевозки между данными пунктами: хi,j=min{аi(q), bj(q)}. После этого значения нераспределенного запаса и неудовлетворенной потребности в соответствующих пунктах уменьшаются на дан­ную величину:

аi(q+1)= аi(q) - xi,j, bj(q+1)= bj(q) - xi,j

Очевидно, что на каждом шаге выполняется хотя бы одно из равенств: аi(q+1)= 0 или bj(q+1)= 0. Если справедливо первое, то это означает, что весь запас i-го пункта производства исчерпан и необходимо перейти к распределению запаса в пункте произ­водства i+1, т. е. переместиться к следующей клетке вниз по столбцу. Если же bj(q+1) = 0, то значит, полностью удовлетворе­на потребность для j -го пункта, после чего следует переход на клетку, расположенную справа по строке. Вновь выбранная клетка становится текущей, и для нее повторяются все пере­численные операции.

Основываясь на условии баланса запасов и потребностей, нетрудно доказать, что за конечное число шагов мы полу­чим допустимый план. В силу того же условия число шагов ал­горитма не может быть больше, чем m+n-1, поэтому всегда останутся свободными (нулевыми) mn-(m+n-1) клеток. Следовательно, полученный план является базисным. Не ис­ключено, что на некотором промежуточном шаге текущий не­распределенный запас оказывается равным текущей неудовлет­воренной потребности i(q)=bj(q)). В этом случае переход к следующей клетке происходит в диагональном направлении (одновременно меняются текущие пункты производства и по­требления), а это означает «потерю» одной ненулевой компо­ненты в плане или, другими словами, вырожденность построен­ного плана.

Особенностью допустимого плана, построенного методом северо-западного угла, является то, что целевая функция на нем принимает значение, как правило, далекое от оптимально­го. Это происходит потому, что при его построении никак не учитываются значения ci,j. В связи с этим на практике для по­лучения исходного плана используется другой способ — ме­тод минимального элемента, в котором при распределении объемов перевозок в первую очередь занимаются клетки с наи­меньшими ценами.

 

Пример нахождения опорного плана

Поставщики Потребители и их спрос Мощность поставщиков
       
           
           
           
           

 

F=14 x11 + 28 x12 + 21 x13 + 28 x14 + 10 x21 + 17 x 22 + 15 x23 + 24 x24 + 14 x31 + 30 x32 +25 x33 + 21 x34

 

Первоначальный план получен по методу северо-западного угла. Задача сбалансированная (закрытая).

Таблица 1

 

Стоимость перевозок по данному плану составляет: 1681:

F=14 *27 + 28* 0 + 21*0 + 28*0 + 10 *6 + 17 *13 + 15*1 + 24 *0 + 14 *0 + 30 *0 +25*26 + 21 *17 =1681

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...