5.3. Механический эквивалент теплоты и «начала» термодинамики.
А пока вернёмся в мракобесное средневековье, в те времена, когда концепция теплорода получила мощную академическую поддержку. Впрочем, как эти академики ни пыжились, концепция теплорода уступила-таки место механической модели теплоты. Обычно историки в качестве ключевого события упоминают открытие Румфорда (1798), который в Мюнхене издевался над мастеровыми, заставляя их рассверливать стволы пушек тупым сверлом. «Ваша светлость, – пытался смягчить его благородные нравы старшой мастеровой, – оно тупым сверлом сверлить труднее, да и ствол, опять же, греется, а через это калибер вниз уходит! » – «Что сверлить труднее, это я, болван, и сам знаю! А что греется… это интересно!.. Может получиться очень недурно!.. Ай, молодца! Держи вот, выпей кружку пива за здоровье моей светлости! » В докладе Королевскому обществу Румфорд излагал: «источник тепла, возникающего при трении в этих опытах, представляется, по-видимому, неисчерпаемым» – а, значит, это тепло «не может быть материальной субстанцией», а должно сводиться «к представлениям о движении». Сразу чувствуется намётанный взгляд проницательного исследователя. Фурор, как есть фурор! Если забыть про то, что так называемые дикари испокон веков умели добывать огонь трением (причём несколькими способами)… если забыть про то, что вода нагревается при встряхивании сосуда, в котором она находится… если забыть про то, что Дэви, немного попыхтя, расплавил трением лёд на морозе… если забыть про труды Ломоносова, который 54 годами ранее, в тех же «Размышлениях…», писал: «Очень хорошо известно, что теплота возбуждается движением: …железо накаливается докрасна от проковывания частыми и сильными ударами»… Если про всё это забыть, то открытие Румфорда было и вправду выдающееся. Бурные продолжительные аплодисменты!
Чтобы как следует закрепить этот успех, раз и навсегда установили механический эквивалент теплоты. С помощью филигранных калориметрических опытов нашли соответствие между таким-то количеством теплоты, измеряемой в калориях, и таким-то количеством механической работы, измеряемой в джоулях. Эквивалентность заключалась в том, что столько-то калорий или столько-то джоулей давали одинаковое повышение температуры буферного вещества в калориметре. Вот оно! Теплота и работа стали «одной крови» – с размерностью энергии! Температуру тела, как оказалось, можно повысить не только через сообщение ему теплоты, но и через совершение над ним работы! На радостях сформулировали то, что до сих пор называется первым началом термодинамики. Тут, правда, возникло небольшое затрудненьице. Требовалось просто и чётко выразить математически ту идею, что теплота и работа с равным успехом способны давать приращение температуры. В одной части равенства пишем теплоту плюс работу… а в другой чего? Приращение температуры имеет другую размерность! И чёрт его знает, как быть с коэффициентом пропорциональности – теплоёмкости-то у разных веществ разные! Чтобы не лезть в эти дебри, сделали проще: записали в другой части равенства величину, которую назвали внутренней энергией тела. И размерность у неё подходящая, и название скромное, но очень полезное: ну, подарок просто. Вот если кто спросил бы тех, кто вводил понятие внутренней энергии – а что это, мол, такое? – так ему бы сразу ответили: «Это та энергия тела, которая увеличивается при повышении его температуры». А он бы спросил тогда: «А температура – это что? » А ему бы ответили: «А тебе больше всех надо, что ли? » Потому что не говорить же, что температура – это то, что повышается при увеличении внутренней энергии. От понятия «температура» и без понятия «внутренняя энергия» тошно. Самое честное её определение в рамках традиционного подхода, следующее: «Температура – это то, что измеряется термометрами». Оно самое честное, потому что здесь дурь сразу видна. А в других определениях температуры дурь видна не сразу, а когда уже жжёт позор за бесполезно прожитые годы.
Что и говорить, повезло создателям первого начала термодинамики, что его уравнение удалось записать без использования температуры. Легко запомнить: внутреннюю энергию тела можно увеличить либо через сообщение теплоты, либо через совершение работы. Ибо теплота – это энергия хаотического движения частиц тела. Сообщи телу теплоту или поработай над ним, это хаотическое движение так и так станет интенсивнее, и температура тела так и так повысится. Всё сходится, в том числе и тепловой баланс! Первое начало термодинамики впечатали в учебники и справочники, на нём взрастили вереницу поколений теплотехников, до сих пор взращивают. И наверное лишь очень немногих из них не терзают смутные сомнения. Ведь по «первому началу» температура тела может измениться только при воздействии на это тело откуда-то извне. Получение тепла – извне! Принятие работы – извне! «Первое начало» однозначно утверждает, что температура тела не может измениться в результате каких-нибудь внутренних процессов в этом теле. Но ведь это шутка, таких процессов полным-полно! Самым жутким в ряду злостных нарушений первого начала термодинамики являются химические реакции с выделением или поглощением тепла, которые без затруднений протекают в условиях термоизоляции от окружающей среды. Вот, скажем, начинается реакция с выделением тепла. А выделяться ему некуда: термоизоляция мешает. Ладно, греет зона реакции саму себя, не пропадать же добру. Но в случае реакции с поглощением тепла всё получается гораздо веселее: неоткуда его поглощать в условиях термоизоляции. Каков смысл формулировки «реакция с поглощением тепла», если единственным тепловым результатом является охлаждение зоны реакции? Это умудриться надо: так «поглощать тепло», чтобы при этом охлаждаться! Заметьте, мы сейчас не уточняем источники тепловых эффектов химических реакций. Мы просто говорим о ситуациях, когда тепловой эффект есть, а передачи тепла или совершённой работы – нет. Укладывается это в первое начало термодинамики? Никоим образом!
А вот ещё тоже известный случай: электрическая цепь, по которой течёт ток. Особенно, когда источником тока является аккумулятор. Проводники имеют ненулевое сопротивление, и в них выделяется джоулево тепло. Это называется «тепловое действие тока». Опять же, никакой передачи тепла при этом не происходит. Если бы она происходила, то тело, которое отдавало бы тепло, охлаждалось бы. Но мы не обнаруживаем такого тела: нагревание есть (всей цепи, в том числе и источника тока), а охлаждения нет. Что же мы видим? Происходит нагрев, когда нет передачи тепла, да и работа над электрической цепью очевидно не совершается. Опять тело само себя греет. Опять первое начало термодинамики оказывается не при делах!
Так ведь и это не всё. Выделение тепла при радиоактивных распадах атомных ядер тоже происходит, начхавши на первое начало термодинамики. Чудны дела ваши, господа теоретики! И вы ещё нам вдалбливаете, что первое начало термодинамики выражает собой фундаментальный принцип: невозможность вечного двигателя первого рода! А ваше «первое начало» – уже трижды подкачало! Прям бери да клепай себе вечные двигатели на выбор: химические, электрические, ядерные!
Эх, дяденьки учёные. Этот ваш прокол конечно можно извинить роковым стечением исторических обстоятельств: «первое начало» было сформулировано в эпоху паровых машин. Да, для паровозов и пароходов оно сошло за милую душу. Но технический прогресс-то не стоял на месте. Появились теплоходы и тепловозы, трамваи и электровозы, да ещё и мирные ядерные реакторы… А первое начало термодинамики так и зависло на правах догмата. Ай-яй-яй. Вы, дяденьки учёные, брали бы пример со служителей культа, что ли. Они время от времени устраивают Вселенские соборы, на которых подправляют свои догматы. Издают официальные указы, в которых так прямо и провозглашают: с такого-то числа веруем по-новому!
Короче, годилось «первое начало» только для паровых машин, да и то, громко говоря. Даже тут не по Сеньке шапка была. Потому что «первое начало» не описывало работу паровой машины в целом. Оно описывало лишь пыхтение пара, а горение топлива, с помощью которого получали и нагревали этот пар, оно не описывало. И, что ещё обиднее, казалось, что пыхтящий пар совершал гораздо больше бесполезной работы, чем полезной. Ведь в полезную работу удавалось превратить лишь малую часть тепла, которое давало сгорание топлива. Мистика какая-то! Сожгут в калориметрической бомбе порцию уголька – и вот она, его теплотворная способность! Бери потом да превращай тепло от его сгорания в работу, согласно «первому началу»! Ан нет. Теплотворная способность – это одно, а работоспособность – это, как выяснилось, совсем другое. Устанавливали-устанавливали механический эквивалент теплоты, а ради чего, спрашивается? Ради того, чтобы от него оставались жалкие 10%, да и то, если повезёт?
Нет, такую жизнь надо было если уж не изменить, то хотя бы оправдать. Вот на это (на оправдание) и решился Карно. Он задумался: как бы это сконструировать формулу, из которой следовало бы принципиальное ограничение на коэффициент полезного действия (КПД) тепловой машины, и соорудил знаменитый рабочий цикл машины, которая для такой задумки подошла идеально. Поэтому её так и стали называть: идеальная тепловая машина. Что тепловая машина должна работать циклически – это, мол, принципиально. Рабочее тело, получив порцию тепла, должно отдать часть приобретённой энергии на совершение полезной работы и охладиться, чтобы иметь возможность получить следующую порцию тепла. Поэтому при анализе работы тепловой машины следует, мол, рассматривать не только нагреватель, от которого получает тепло рабочее тело, но и т. н. холодильник, которому рабочее тело отдаёт тепло, не превращённое в полезную работу (отсюда и пошло выражение «эта машина хорошо атмосферу греет»). Так вот, одним из лучших описаний цикла Карно считается описание в известном учебнике – А. К. Кикоин, И. К. Кикоин, «Молекулярная физика». Это просто сказка. Логика такая: чтобы КПД тепловой машины был максимален, следует исключить необратимые потери тепла. А эти потери тепла непременно имеют место при теплопередаче. Следовательно, в идеальной тепловой машине следует исключить… процессы теплопередачи! Вы не подпрыгнули, дорогой читатель: «Как?! Как же такая машина сможет работать? » А вот, Кикоины сейчас всё разъяснят. Цикл начинается с того, что рабочее тело «находится в контакте с нагревателем и, следовательно, имеет такую же, как он, температуру… Предоставим теперь рабочему телу возможность расшириться и переместить… поршень, не прерывая контакт с нагревателем. Расширение, следовательно, будет изотермическим… При этом будет совершена работа. Она совершается за счёт тепла, отнятого от нагревателя… Полученное рабочим телом тепло нужно теперь передать холодильнику. Эту передачу тоже не следует осуществлять прямым соприкосновением рабочего тела с холодильником… рабочее тело надо сначала охладить до температуры холодильника и уже после этого их можно привести в соприкосновение… Теперь необходимо вернуть рабочее тело в исходное состояние, т. е. …в контакт с нагревателем. Этот контакт по-прежнему не следует осуществлять, пока температура рабочего тела ниже температуры нагревателя… Сначала рабочее тело сжимают, не прерывая его контакта с холодильником, т. е. изотермически… Затем, изолировав рабочее тело от холодильника, его дополнительно сжимают… После того как… температура рабочего тела станет равной температуре нагревателя, их приводят в контакт, и цикл на этом завершается: рабочее тело находится в исходном состоянии».
Видите, всё гениально просто: чтобы не было потерь тепла, рабочее тело должно контактировать с нагревателем, будучи лишь при температуре нагревателя, а контактировать с холодильником, будучи лишь при температуре холодильника. Дяденьки, а сколько тепла «отнимет» рабочее тело у нагревателя, если за всё время контакта с ним оно будет иметь одинаковую с ним температуру? Правильно, ноль целых и шиш десятых. Цикл ведь специально разрабатывался так, чтобы теплопередач не было! Бляха-муха, а зачем тогда нужен нагреватель!? Если рабочее тело и без его помощи нагревают до температуры, с которой начинается цикл?! Да и для холодильника – всё аналогично! Получается просто шедевр: тепловая машина, для работы которой нагреватель и холодильник на хрен не нужны! И это, нам говорят, идеальная тепловая машина! Вот он, идеал, к которому нужно стремиться!
Не знаем, нашлись ли чудилы, которые пытались следовать этим практическим рекомендациям, и удалось ли этим чудилам построить если уж не идеальную тепловую машину, так приблизиться к этому идеалу хотя бы наполовину. Молчит история. Так бывает: теория великолепна, но упрощающие допущения в ней самоубийственны. Вспоминается один доклад, в котором автор замахнулся на важную и актуальную проблему: «Новые математические методы раскроя одежды». Первой фразой там была такая: «Примем для простоты, что человеческое тело имеет форму шара» – и далее автор разобрался с проблемой, как Бобик с фуфайкой. Публика от восторга визжала и плакала.
Тут термодинамщики небось обидятся. И заявят, что тепловые машины-то работают. А без верного научного понимания они бы, мол, не работали. Отнюдь. Создаётся впечатление, что работа тепловых машин – сама по себе, а их «научное понимание» – само по себе. Одно другому не мешает. Знаете, Солнце тоже светит и греет, но вовсе не благодаря чьему-то «верному научному пониманию». Вон Карно выдал на основе своего понимания формулу для КПД идеальной тепловой машины. Этот КПД зависит лишь от соотношения температур нагревателя и холодильника: чем температура холодильника ниже, а температура нагревателя выше, тем КПД больше. Без этой формулы Карно не обходится ни один учебник по термодинамике. И все эти учебники, словно их авторы сговорились, обходят молчанием вопрос: а подтверждаются ли опытом предсказания, сделанные на основе формулы Карно? Ведь как было бы здорово, если формула, полученная при прикольных допущениях, давала бы предсказания, ценные для практики! Что, это так сложно проверить? Конечно, это несложно, и это уже давно и многократно проверено. Паровозы-то, как известно, бегали круглый год. Температура горения угля в паровозной топке, а также рабочая температура пара одинаковы и летом, и зимой, а вот температура атмосферы, которая играет роль холодильника, зимой ниже, чем летом. Если считать, что КПД паровоза круглый год составляет один и тот же процент от КПД идеальной тепловой машины, то зимой КПД паровоза должен быть заметно выше, чем летом. Зимой гонять паровозы было бы выгоднее: потребление угля было бы меньше. В действительности всё наоборот: так, в России паровозы зимой потребляли угля на 20-25% больше, чем летом. В основном потому, что зимой больше перепад температур между атмосферой и горячим паровозным железом, поэтому потери тепла на «нагрев атмосферы» зимой больше, а полезная работа, соответственно, меньше. Вот так с ней, с пониженной температуркой холодильничка! Возможно формула Карно великолепно работает для идеальных тепловых машин, только никто это не проверял, потому что таких машин нет и быть не может. А вот для реальных тепловых машин на основе этой формулы получаются конкретно бредовые предсказания. Впрочем, при всех недостатках формулы Карно у неё есть бесспорное достоинство – феноменальное научное долголетие.
Короче, эта формула, хотя и украсила собой учебники, не помогла прояснить проблему, ради которой она сочинялась. Люди, далёкие от высокой науки, так и не могли взять в толк, отчего КПД паровых машин, который согласно первому началу термодинамики должен составлять 100%, в реальности составлял менее 10%. Больше всех по этому поводу кипятились владельцы паровозных и пароходных компаний. Все они были какие-то нервные, особенно при известии об очередном повышении цен на уголь. Чтобы успокоить этих господ, пришлось физикам развить представления о том, что тепло теряется не по вине разработчиков и производителей паровых машин: необратимые потери тепла – это, мол, фундаментальный закон природы. В ней, мол, куда ни плюнь – сплошь идут необратимые тепловые процессы, при которых тепло непременно теряется. Любая передача тепла – это необратимый процесс с неизбежными потерями. Нагревается железка из-за трения или электрического тока – вот оно, тепло. А потом железка остывает – и нет тепла. Ищи-свищи! Потерянного не воротишь. Потому и говорится: необратимые процессы. А такие процессы, само собой, могут протекать лишь в одном направлении. Угадайте, в каком? Да в таком, чтобы при этом тепло терялось! Этот принцип назвали «вторым началом термодинамики». Вот его наглядная иллюстрация: тепло переходит лишь в одну сторону, от горячего к холодному. Это и раньше было известно, но теперь под это подвели, как видите, мощный теоретический фундамент. Кстати, упрощённая формулировка «второго начала» так и звучит: «Тепло самопроизвольно переходит только от горячих тел к холодным». Эту формулировку предложил Клаузиус (1850), после чего терзался 15 лет и лишь в 1865 г. облегчил себе душу покаянием: эта формулировка, мол, порождает чудовищную проблему. Смотрите: ключевое слово там – «самопроизвольно». Вы конечно можете проявить произвол и построить холодильную машину, хотя она всё равно будет греть атмосферу сильнее, чем охлаждать ваше пиво. Но эта холодильная машина – пренебрежимая мелочь по сравнению с масштабами природных процессов, которые происходят как бы самопроизвольно. Значит тепло везде переходит только в одну сторону: от горячего к холодному, от горячего к холодному… Тогда неизбежен вывод о том, что – долго ли, коротко ли – температуры всех тел выровняются, и получится т. н. «тепловая смерть Вселенной». Жуть, даже пальчиком пошевелить не сможешь, если где-нибудь зачешется.
Но – радость-то какая! – никаких признаков приближения тепловой смерти Вселенной не наблюдается. Где же так махнулись теоретики? Может, говоря о самопроизвольных процессах в природе, мы чего-то важного не замечаем? Вот, скажем, наладили вы серийное производство бытовых холодильников «Морозко». Тогда понятно, что благодаря и вашему скромному вкладу на Земле пока ещё не наступила тепловая смерть. А кто же занимается аналогичными холодильными делами в масштабах Солнечной системы, в масштабах Галактики? Если теоретики сформулировали фундаментальный принцип, из которого прямо следует, что мир трепыхается благодаря чьему-то произволу, они должны были разъяснить, о ком конкретно речь, кому нам в ножки кланяться. Видите, дорогой читатель, куда нас заносит? С ума сойдёшь от таких теоретиков! И не мы первые это заметили. Многим не хотелось сходить с ума и было предпринято немало попыток доказать, что «второе начало» верно, а его прямое следствие (насчёт тепловой смерти Вселенной) ошибочно, ошибочно, ошибочно! Это был какой-то парад высшей, уму непостижимой логики. Право, неинтересно даже.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|