Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Линеаризация системы дифференциальных уравнений

 

Дифференциальные уравнения могут быть как линейные, так и нелинейными. Нелинейные дифференциальные уравнения вносят значительные затруднения в решение реальных задач, особенно в тех случаях, когда они имеют высокий порядок. Поэтому очень часто стараются заменить в первом приближении нелинейное дифференциальное уравнение линейным, анализ которого выполняется значительно проще. Методика выполнения такой замены называется линеаризацией.

Линеаризация системы дифференциальных уравнений САУ основана на двух предложениях.

1. Предполагается, что при номинальной работе системы отклонения внешних воздействий от их постоянных номинальных значений малы, а следовательно, малы и отклонения всех переменных в системе.

Однако, необходимо отметить, что это предположение выполняется далеко не всегда.

2. Все функции от переменных, входящих в данное уравнение, не имеют разрывов и являются гладкими при номинальных значениях аргументов. Другими словами, предполагается, что для каждой функции существуют первые производные по всем аргументам в точке, соответствующей номинальному режиму. В противоположном случае, если хотя бы одна из функций, входящих в уравнения, имеет разрыв в точке номинального режима, либо не является гладкой в этой точке, то такое уравнение, а также сама функция называются существенно нелинейными. Линеаризация таких уравнений и функции невозможна.

Номинальные значения переменных обозначаются большими буквам с верхним нулевым индексом:

X(t)= X0= const, U(t)= U0= const и т.д

 

Отклонения переменных обозначаются соответствующими маленькими буквами:

x (t)= X (t) – X 0 и т.д

 

Очевидно, что в номинальном режиме отклонения всех переменных в системе, а также производные отклонений по времени равны нулю.

Дифференциальное уравнение является линейным, если функция f 1 (…) и f 2 (…) в левой и правой частях являются линейными комбинациями переменных и их производных:

 

 

В частном случае, если функции f1(...) и f2(...) не содержат в качестве аргументов производных искомой функции и заданных функций, дифференциальное уравнение (1) превращается в обычную функцию определяющую зависимость переменной X(t) в какой-либо момент от мгновенных значений аргументов Y(t),..., Z(t) в тот же момент:

 

                (3)

 

Такой вид математической модели означает, что моделируемый объект рассматривается как статический (безинерционный). САР напряжение сварочной дуги-это статическая система, так как всегда будет присутствовать ошибка регулируемого параметра, в силу нелинейной зависимости числа оборотов двигателя от величины магнитного потока возбуждающей компенсирующей обмотке 2.

Аналитическая запись линейной функции содержит только суммы аргументов, умноженных, быть может, на постоянные коэффициенты

 

 

Если функция имеет только один аргумент, то она может быть задана в виде графика. График линейной функции имеет вид прямой линии, проходящей через начало координат:

 

 

Заметим, что если график, имеющий вид прямой линии, не проходит через начало координат, то соответствующая ему функция не является линейной. Вернемся к системе уравнений САР напряжение сварочной дуги. Очевидно, что в этой системе линейными являются уравнения в пп. 2,4,6,8,11,12,14,15,16,18,19,20,21,22. К нелинейным относятся уравнения в пп. 1,3,5,7,9,10,13,17.

В общем случае линеаризация заключается в разложении функции в ряд Тейлора в окрестности номинальных значений аргументов и отбрасывании членов ряда, порядок которого выше первого.

При проведении линеаризации конкретной функции необходимо внимательно относится к номинальным значениям переменных, отмечая те из них, которые равны нулю в установившемся режиме работы данной САР. Если номинальные значения некоторых переменных равны нулю, то могут обратиться в нуль коэффициенты при отдельных аргументах в выражении линеаризованной функции. Такие аргументы необходимо отбросить.

Для тех дифференциальных уравнений и функций исходной модели САР, которые являются линейными, переход к отклонениям сводится к замене обозначений полных переменных на обозначения их отклонений.

Итак, линеаризованная система уравнений имеет вид:

1) Для линеаризации зависимости напряжения подаваемого на компенсационную обмотку генератора U1 от задающего напряжения Uз и перемещения ручки потенциометра Х, необходимо найти частные производные U1 по переменным Uз и Х в точках номинальрого режима

 

 

Линеаризированная зависимость примет вид:

 

2)

 

3) Зависимость магнитного потока возбуждения Ф1 генератора от величины тока возбуждения I1 задана графически. Отметив на графике точку номинального режима и проведя касательную к графику в этой точке, получим линеаризованную зависимость магнитного потока от тока в отклонениях.


 

Тангенс угла наклона к оси i1 обозначим К5. Линеаризованная зависимость примет вид

 

4)

 

5) Для линеаризации зависимости напряжения на щетках якоря генератора Uя от величины магнитного потока возбуждения Ф и скорости привода генератора Wг необходимо найти частные производные Uя. по переменным Ф и Wг в точке номинального режима:

 

 

Линеаризованная зависимость:

 

6)

 

7) Линеаризация зависимости вращающего момента на валу двигателя Мдв от тока якоря Iдв и величина потока возбуждения Фв, аналогична линеаризации уравнения п. 1, 5. Линеаризованная зависимость:

 

8)

 

9) Линеаризация зависимости скорости вращения якоря двигателя Wдв в магнитном потоке возбуждения Фв от противо-ЭДС Е проводится аналогично пп.1,5,7:

 

 

10) Линеаризация графически заданной величины магнитного потока возбуждения двигателя Фвд от тока возбуждения проводится аналогично пп. 3

 

 

11) Линеаризация уравнение связи тока возбуждения двигателя Iв с напряжением возбуждения Uв

 

 

12) Линеаризация скорость подачи электрода Vп от скорости двигателя Wдв

 

 

13) Линеаризация зависимость сопротивления сварочной дуги Rд и тока сварочной дуги Iд от напряжения трансформатора Uт аналогична п.1,5,7,9.

Пусть ,тогда исходное дифференциальное уравнение примет вид:

 

 

Линеаризованная зависимость примет вид:

 

14)

 

15) Линеаризованная зависимость величины зазора между электродом и подложкой L от суммарной скорости подачи электрода Vп и скорости сгорания подложки Vс

 

16)

 

17) Линеаризация напряжение сварочной дуги Uд от тока сварочной дуги Iд, а также от сопротивления сварочной дуги Rд аналогично пп. 1,5,7,9,13:

 

18)

 

19) Линеаризация уравнения связи тока возбуждения генератора I2 с напряжением потенциометра UR аналогично уравнению в п.2 для тока возбуждения генератора:

 

 

20) Линеаризация графически заданной величины магнитного потока возбуждения двигателя Ф2 от тока возбуждения проводится аналогично п. 3, 10:

 

21)

22)

 

6. Взвешенный сигнальный граф и структурная схема линейной математической модели САР

 

Для определения закона изменения во времени данной выходной величины необходимо исключить из системы уравнений все остальные переменные, являющиеся в данном случае промежуточными, и получить дифференциальное уравнение, связывающее рассматриваемую выходную переменную с входной, представленной заданной функцией времени в правой части уравнения.

Операции исключения промежуточных переменных из сложных дифференциальных уравнений очень трудоемки и громоздки. Поэтому возникает потребность упростить эти операции. С этой целью в линейных математических моделях САУ обычно используют операционную форму записи линейных дифференциальных уравнений, представляя уравнение каждой связи сигнального графа в виде так называемой передаточной функции.

Замена дифференциальных уравнений передаточными функциями позволяет представить систему линейных дифференциальных уравнений САУ в виде взвешенного сигнального графа, либо в виде структурной схемы.

Существенным ограничением на применение передаточных функций при исследовании линейных САУ является то обстоятельство, что передаточная функция линейного дифференциального уравнения ставит в соответствие каждой конкретной функции в правой части (входному сигналу) одно решение дифференциального уравнения, удовлетворяющее нулевым начальным условиям.

Для перехода к операторной форме записи необходимо оператор дифференциального уравнения d / dt заменить символом p, с которым в дальнейшем можно поступать как с сомножителем.

В операторной форме записи дифференциальное уравнение

 

примет вид

 

Вынеся переменные x(t)и y(t) за скобки в левой и правой частях, получим операторную форму дифференциального уравнения:

 

 

По своей форме это уравнение является алгебраическим, а не дифференциальным. Разрешим его относительно искомой переменной x(t), разделив обе части ни сомножитель

 

 

Мы получили очень наглядную запись линейного дифференциального уравнения.

Искомая переменная x(t) представлена как результат умножения независимой переменной y(t) на символический коэффициент

 

 

Этот коэффициент W(p) называется передаточной функцией данного дифференциального уравнения. Передаточная функция условно и в то же время наглядно отражает структуру и численные значения коэффициентов дифференциального уравнения, связывающего две переменные - независимую (входную) y(t) и искомую (выходную) x(t):

 

 

Таким образом, передаточная функция - его один из удобных способов записи линейного дифференциального уравнения.

Запишем в операторной форме систему линеаризованных дифференциальных уравнений исследуемой САР. Коэффициенты, возникающие при переходе к операторной форме записи, будем нумеровать по порядку К1, К2, К3,… (большими буквами без штрихов, нумерованные по порядку возрастания). Постоянные времени будем также нумеровать по порядку их возникновения Т1, Т2,…

Если уравнение не является дифференциальным, то его вид не изменяется:

 

1) u1=K1х+ K2u3;

W1(p)=K1. W2(p)=K2.

где K1=.K'1 и K2.=K'2


 

2) Заменим оператор дифференцирования в левой части сомножителем р и вынесем за скобки переменную iвг. Разрешив полученное уравнение относительно iвг, получим запись дифференциального уравнения в виде передаточной функции:

 

где

3) j1=K6 i; W4(p)=K6, где К65'.

4) j=j1+j2

 

 

5) uя=K8j+K7wг; W5(p)=K7; W6(p)=K8, где К7 =K'7, K8=K'6.

 

 

6)

где

 

 

7) mqв=K12iдв+K13jв; W8(p)=K12; W9(p)=K13, K12=K'10, K13=K'11.

 

 

8)

 

 

9) е=K17w г+K16jв;

W12(p)=K17; W11(p)=K16, где K16=K'13, K17=K'14.


 

10) jв=K18iв; W13(p)=K18, где K18=K'15.

11)

где

12)

13)

где

14)

15) ;

 

 

16)

17) uд=K30iд+ K31rд;

W21(p)=K30. W22(p)=K31.

где K30=.K'28 и K31.=K'29

 

 

18)

19)

где

20) j2=K36i2; W25(p)=K26, K36=K'33

21) uс=K37 uт; W26(p)=K37, K37=K'34

22)

 

Взвешенный сигнальный граф и структурная схема являются эквивалентными формами наглядного графического представления системы линейных дифференциальных уравнений САР. Как взвешенный граф, так и структурная схема используют запись дифференциальных уравнений связей в виде передаточных функций.

Взвешенный сигнальный граф по своей структуре почти полностью совпадает с исходным сигнальным графом (Рисунок 3), каждому его ребру приписан вес, имеющий вид передаточной функции. Взвешенный сигнальный граф САР напряжения сварочной дуги приведен на Рисунке 4.

Порядок построения структурной схемы линейной математической модели аналогичен порядку построения исходного сигнального графа. Сначала слева направо располагают основную цепочку связей переменных от сигнала задания к управляемой величине. Затем внизу справа налево строят цепочку главной обратной связи. После этого в произвольном порядке достраивают остальные связи математической модели.

Структурная схема САР напряжения сварочной дуги приведена на Рисунке 5.

 

7. Определение передаточных функций САР напряжения сварочной дуги

 

Дифференциальное уравнение, связывающее входную переменную линейной математической модели САР, соответствующей какой-нибудь внешней величине сигнального графа, с выходной переменной, соответствует одной из внутренних вершин, называется сквозным дифференциальным уравнением от входа к выхода. Сквозное дифференциальное уравнение называют также уравнением замкнутой системы от данного входа к данному выходу.

Передаточная функция, соответствующая сквозному дифференциальному уравнению, называется сквозной передаточной функцией САР от данного входа к данному выходу. Другое название – передаточная функция замкнутой системы от данного входа к данному выходу.

Одним из входов математической модели САР является задающее воздействие. Этот вход называется главным входом. Аналогично среди выходов математической модели САР выделяют главный выход, под которым понимают регулируемую величину.

Сквозную передаточную функцию, связывающую главный выход модели САР с главным входом, называют главным оператором САР. Его обозначают Ф(р).

Для определения сквозной передаточной функции САР от заданного входа к заданному выходу необходимо положить равным нулю все прочие входные сигналы, что равносильно удалению из структурной схемы соответствующих цепочек элементов. Затем необходимо с помощью применения подходящих правил преобразования структурных схем привести структурную схему к простейшему виду - одному элементу, входной и выходной сигналы которого соответствуют заданным входу и выходу математической модели САР. Передаточная функция этого элемента и есть искомая сквозная передаточная функция.

В схеме можно выделить три характерных соединения элементов: последовательное, параллельное, и обратное (в виде отрицательной либо положительной обратной связи). Группа последовательно соединенных элементов структурной схемы при условии, что между элементами нет сумматоров и ответвлений сигнала, может быть заменена одним элементом с передаточной функцией, равной произведению передаточных функций всех элементов:

 

 

 

Группу параллельно соединенных элементов структурной схемы можно заменить одним элементом с передаточной функцией, равной сумме передаточных функций всех элементов:

 

 

 

Если сигнал с выхода элемента обратной связи вычитается из сигнала, поступающего на вход элемента прямой цепи, то обратная связь является отрицательной, а если прибавляется – положительной. Такую пару элементов можно заменить одним элементом с передаточной функцией, равной дроби, числитель которой представляет собой передаточную функцию элемента прямой цепи, а знаменатель - произведение передаточных функций элементов прямой цепи и обратной связи со знаком плюс, если обратная связь отрицательная, или со знаком минус, если обратная связь положительная, увеличенное на единицу:

 

 

 

При преобразовании структурной схемы можно использовать правила переноса точки разветвления и точки суммирования сигналов. Пусть точка разветвления переносится против направления прохождения сигнала. Тогда в переносимую ветвь нужно включить элемент, передаточная функция которого равна передаточной функции элемента между прежней и новой точками разветвления (а). Пусть точка разветвления переносится по направлению прохождения сигнала. Тогда в переносимую ветвь нужно включить элемент с передаточной функцией, обратной передаточной функции элемента между новой и прежней точками разветвления (б). Если точка суммирования переносится по направлению прохождения сигнала. При этом в переносимую ветвь нужно включить элемент с передаточной функцией, равной передаточной функции элемента между прежней и новой точками суммирования (в). Если точка суммирования переносится против направления прохождения сигнала, то в переносимую ветвь нужно включить элемент с передаточной функцией, обратной передаточной функции элемента между новой и прежней точками суммирования (г).

 

а).

 

б).

 

в).

 

г).


1. Определение главного оператора САР по взвешенному сигнальному графу с помощью преобразования структурных схем (см. Рисунки 6-11)

На каждом этапе делаем промежуточные вычисления в итоге получим формулу главного оператора САР Ф(р) (Рисунок 11). После преобразования имеем:

 

 

Для того, чтобы перейти к стандартной форме записи передаточной функции, раскроем скобки в знаменателе и введем обозначения:

 

где

 

Окончательно получим:

 

 

Единица измерения передаточной функции должна быть равна отношению единиц измерения выходной и входной величин Х = Ф(р) U з следовательно Ф(р):[ В/м ]

Проверим правильность проведения выкладок при получении передаточной функции:

 

отсюда,

 

Следовательно,

Проверим коэффициент К:

 

.

 

Итак, главный оператор имеет размерность В/м, что полностью совпадает с его физическим смыслом.

2. Определение сквозной передаточной функции САР по взвешенному сигнальному графу с помощью преобразования структурных схем (см.Рисунки12-19)

Главным (основным) возмущающим воздействием данной САР является напряжение сети UC. Определим эту передаточную функцию, используя правила преобразования структурных схем.

Для этого

 

 

Для того, чтобы перейти к стандартной форме записи передаточной функции, раскроем скобки в знаменателе и в числители и введем обозначения:

 

 

 

 

где

 

Искомая сквозная передаточная функция принимает следующий стандартный вид:

 

 

Проверим правильность проведения выкладок при получении передаточной функции:

 

;

;

;

;

 

Единицы измерения коэффициентов:

 

 

Проверим коэффициент К:

 

 

Сквозная передаточная функция безразмерна, что полностью совпадает с ее физическим смыслом:

 

 

3. Определение контурной передаточной функции

Для определения контурной передаточной функции САР температуры печи, разорвем в любом месте основной контур системы, образованный главной связью. Если положить равными нулю отклонения сигналов на всех входах линейной модели САР от их номинальных значений, то зависимость во времени отклонения U д дуги от отклонения входного напряжения U з относительно их общего номинального значения U з 0 будет определяться некоторым дифференциальным уравнением:

 

 

Это и есть контурное дифференциальное уравнение. Передаточная функция, соответствующая этому уравнению, называется контурной передаточной функцией, взятая со знаком минус.

Используя правила преобразования структурных схем (см. Рисунки 20-23) имеем:

 

 

Введя обозначения, получим:

 

 

 

где

 

Проверим правильность проведения выкладок при получении передаточной функции:

 

 

Единицы измерения коэффициентов:

 

 

Итак, получили контурную передаточную функцию W (p).


Заключение

 

В данной курсовой работе исследовалась система автоматического регулирования напряжения сварочной дуги. Была построена математическая модель системы, которая с определенной точностью отражает процессы, протекающие в системе. В работе составлен сигнальный граф САР, по которому составлена система дифференциальных уравнений. Так как некоторые из этих уравнений нелинейны, поэтому они были линеаризованы. Для упрощения расчётов система была записана в оперативной форме, а также построены изображения математической модели в виде взвешенного сигнального графа и структурной схемы. По структурной схеме с помощью специальных правил преобразования её элементов была построена сквозная передаточная функция от заданного входа к заданному выходу. Проверка размерности передаточной функции показала, что расчёт был проведён верно.

 


Список использованной литературы

1. Моттль В.В. Теоретические основы кибернетики. – Тула, 1982.

2. Сапожников Р.А. Основы теоретической кибернетики. – М., Высшая школа,1970.

3. Воронов А.А. Основы теории автоматического управления. – М., Энергия, 1980.

4. Ципкин Я.З. Основы теории автоматических систем. – М., Наука, 1977.

5. Фельдбаум А.А. Электрические системы автоматического регулирования. – М., 1957.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...