Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Характеристики систем памяти




Перечень основных характеристик, которые необходимо учитывать, рассматривая конкретный вид ЗУ, включает в себя:

  • место расположения;
  • емкость;
  • единицу пересылки;
  • метод доступа;
  • быстродействие;
  • физический тип;
  • физические особенности;
  • стоимость.

По месту расположения ЗУ разделяют на процессорные, внутренние и внешние. Наиболее скоростные виды памяти (регистры, кэш-память первого уровня) обычно размещают на общем кристалле с центральным процессором, а регистры общего назначения вообще считаются частью ЦП. Вторую группу (внутреннюю память) образуют ЗУ, расположенные на системной плате. К внутренней памяти относят основную память, а также кэш-память второго и последующих уровней (кэш-па­мять второго уровня может также размещаться на кристалле процессора). Мед­ленные ЗУ большой емкости (магнитные и оптические диски, магнитные ленты) называют внешней памятью, поскольку к ядру ВМ они подключаются аналогично устройствам ввода/вывода.

Емкость ЗУ характеризуют числом битов либо байтов, которое может хранить­ся в запоминающем устройстве. На практике применяются более крупные едини­цы, а для их обозначения к словам «бит» или «байт» добавляют приставки: кило, мега, гига, тера, пета, экза (kilo, mega, giga, tera, peta, exa). Стандартно эти пристав­ки означают умножение основной единицы измерений на 103, 10G, 109, 1012, 1015и 101 соответственно. В вычислительной технике, ориентированной на двоичную систему счисления, они соответствуют значениям достаточно близким к стандар­тным, но представляющим собой целую степень числа 2, то есть 210, 220, 230, 240, 250, 260. Во избежание разночтений, в последнее время ведущие международные орга­низации по стандартизации, например IEEE (Institute of Electrical and Electronics Engineers), предлагают ввести новые обозначения, добавив к основной приставке слово binary (бинарный): kilobinary, megabinary, gigabinary, terabinary, petabinary, exabinary. В результате вместо термина «килобайт» предлагается термин «киби-байт», вместо «мегабайт» — «мебибайт» и т. д. Для обозначения новых единиц пред­лагаются сокращения: Ki, Mi, Gi, Ti, Pi и Ei.

 

Важной характеристикой ЗУ является единица пересылки. Для основной памя­ти (ОП) единица пересылки определяется шириной шины данных, то есть коли­чеством битов, передаваемых по линиям шины параллельно. Обычно единица пе­ресылки равна длине слова, но не обязательно. Применительно к внешней памяти данные часто передаются единицами, превышающими размер слова, и такие еди­ницы называются блоками.

При оценке быстродействия необходимо учитывать применяемый в данном типе ЗУ метод доступа к данным. Различают четыре основных метода доступа:

· Последовательный доступ. ЗУ с последовательным доступом ориентировано на хранение информации в виде последовательности блоков данных, называе­мых записями. Для доступа к нужному элементу (слову или байту) необходи­мо прочитать все предшествующие ему данные. Время доступа зависит от положения требуемой записи в последовательности записей на носителе ин­формации и позиции элемента внутри данной записи. Примером может слу­жить ЗУ на магнитной ленте.

· Прямой доступ. Каждая запись имеет уникальный адрес, отражающий ее фи­зическое размещение на носителе информации. Обращение осуществляется как адресный доступ к началу записи, с последующим последовательным досту­пом к определенной единице информации внутри записи. В результате время доступа к определенной позиции является величиной переменной. Такой ре­жим характерен для магнитных дисков.

· Произвольный доступ. Каждая ячейка памяти имеет уникальный физический адрес. Обращение к любой ячейке занимает одно и то же время и может произ­водиться в произвольной очередности. Примером могут служить запоминаю­щие устройства основной памяти.

· Ассоциативный доступ. Этот вид доступа позволяет выполнять поиск ячеек, содержащих такую информацию, в которой значение отдельных битов совпа­дает с состоянием одноименных битов в заданном образце. Сравнение осуще­ствляется параллельно для всех ячеек памяти, независимо от ее емкости. По ассоциативному принципу построены некоторые блоки кэш-памяти.

Быстродействие ЗУ является одним из важнейших его показателей. Для коли­чественной оценки быстродействия обычно используют три параметра:

· Время доступа (ТД). Для памяти с произвольным доступом оно соответствует интервалу времени от момента поступления адреса до момента, когда данные заносятся в память или становятся доступными. В ЗУ с подвижным носителем информации — это время, затрачиваемое на установку головки записи/считы­вания (или носителя) в нужную позицию.

· Длительность цикла памяти или период обращенияц). Понятие применяет­ся к памяти с произвольным доступом, для которой оно означает минимальное время между двумя последовательными обращениями к памяти. Период обращения включает в себя время доступа плюс некоторое дополнительное время. Дополнительное время может требоваться для затухания сигналов на линиях, а в некоторых типах ЗУ, где считывание информации приводит к ее разруше­нию, — для восстановления считанной информации.

· Скорость передачи. Это скорость, с которой данные могут передаваться в па­мять или из нее. Для памяти с произвольным доступом она равна 1/Гц. Для других видов памяти скорость передачи определяется соотношением:

где TN среднее время считывания или записи N битов; ТА среднее время доступа; R — скорость пересылки в битах в секунду.

Говоря о физическом типе запоминающего устройства, необходимо упомянуть три наиболее распространенных технологии ЗУ — это полупроводниковая память, память с магнитным носителем информации, используемая в магнитных дисках и лентах, и память с оптическим носителем — оптические диски.

В зависимости от примененной технологии следует учитывать и ряд физичес­ких особенностей ЗУ, например энергозависимость. В энергозависимой памяти информация может быть искажена или потеряна при отключении источника пи­тания. В энергонезависимых ЗУ записанная информация сохраняется и при от­ключении питающего напряжения. Магнитная и оптическая память — энергоне­зависимы. Полупроводниковая память может быть как энергозависимой, так и нет, в зависимости от ее типа. Помимо энергозависимости нужно учитывать, приводит ли считывание информации к ее разрушению.

Основная память

Основная память (ОП) представляет собой единственный вид памяти, к которой ЦП может обращаться непосредственно (исключение составляют лишь регистры центрального процессора). Информация, хранящаяся на внешних ЗУ, становится доступной процессору только после того, как будет переписана в основную память. Основную память образуют запоминающие устройства с произвольным досту­пом. Такие ЗУ образованы как массив ячеек, а «произвольный доступ» означает, что обращение к любой ячейке занимает одно и то же время и может производить­ся в произвольной последовательности. Каждая ячейка содержит фиксированное число запоминающих элементов и имеет уникальный адрес, позволяющий разли­чать ячейки при обращении к ним для выполнения операций записи и считыва­ния. Основная память может включать в себя два типа устройств: оперативные за­поминающие устройства (ОЗУ) и постоянные запоминающие устройства (ПЗУ).

Преимущественную долю основной памяти образует ОЗУ, называемое опера­тивным, потому что оно допускает как запись, так и считывание информации, причем обе операции выполняются однотипно, практически с одной и той же ско­ростью, и производятся с помощью электрических сигналов. В англоязычной литературе ОЗУ соответствует аббревиатура RAM — Random Access Memory, то есть «память с произвольным доступом», что не совсем корректно, поскольку па­мятью с произвольным доступом являются также ПЗУ и регистры процессора. Для большинства типов полупроводниковых ОЗУ характерна энергозависимость — даже при кратковременном прерывании питания хранимая информация теряется. Микросхема ОЗУ должна быть постоянно подключена к источнику питания и по­этому может использоваться только как временная память.

Вторую группу полупроводниковых ЗУ основной памяти образуют энергоне­зависимые микросхемы ПЗУ (ROM — Read-Only Memory). ПЗУ обеспечивает счи­тывание информации, но не допускает ее изменения (в ряде случаев информация в ПЗУ может быть изменена, но этот процесс сильно отличается от считывания и требует значительно большего времени).

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...