Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Экзаменационный билет №8.




1 Вопрос. Общая характеристика и классификация органов чувств. Нейросенсорные клетки органа обоняния и зрения, строение и гистофизиология.

 

Органы чувств представляют собой периферическую часть

анализаторов. Они осуществляют рецепцию и образование нервного импульса.

Классификация

Органы чувств подразделяются на три группы:

1 тип – нейросенсорные (орган зрения, орган обоняния) – раздражение

воспринимают видоизмененные нервные клетки (нейросенсорные): палочки,

колбочки, булавовидные клетки. Развиваются из нервной трубки. Каждая такая

клетка имеет периферический специализированный отросток – дендрит, кот.

воспринимает раздражение. Второй отросток – центральный, передает

возбуждение в виде импульса в промежуточное звено анализатора.

2 тип – эпителиосенсорные (органы вкуса, равновесия, слуха) –

раздражение воспринимают специализированные эпителиальные клетки

(сенсоэпителиальные). К этим клеткам подходят дендриты нервных клеток и

воспринимают их возбуждение. Уже в нервных клетках это возбуждение

преобразуется в нервный импульс, который передается в промежуточное звено.

3 тип – органы чувств, не имеющие четкой органной организации –

восприятие раздражения осуществляют инкапсулированные и

неинкапсулированные рецепторы, кот. являются периферическими частями

анализаторов осязания, давления и др

СТРОЕНИЕ ФОТОСЕНСОРНЫХ НЕЙРОНОВ (первично чувствующих клеток). ПАЛОЧКОВЫЕ ФОТОСЕНСОРНЫЕ НЕЙРОНЫ. Их тела располагаются в наружном ядерном слое. Участок тела вокруг ядра нейрона называется перикарион. От перикариона отходит центральный отросток - аксон, который заканчивается синапсом с дендритами ассоциативных нейронов. Перифепический отросток - дендрит заканчивается фоторецептором - палочкой. ПАЛОЧКА ФОТОРЕЦЕПТОРНОГО НЕЙРОНА состоит из двух сегментов, или члеников: наружного и внутреннего. Наружный сегмент состоит из дисков, количество которых достигает 1000. Каждый диск представляет собой сдвоенную мембрану. Толщина диска 15 нм, диаметр - 2 мм, расстояние между дисками - 15 нм, расстояние между мембранами внутри диска - 1 нм. Эти диски образуются следующим образом. Цитолемма наружного членика впячивается внутрь. Образуется сдвоенная мембрана. Затем эта сдвоенная мембрана отшнуровывается и образуется диск. В мембранах диска имеется зрительный пурпур-родопсин, состоящий из белка-опсина и альдегида витамина А-ретиналя. Таким образом, чтобы палочки функционировали, необходим витамин А. Наружный членик соединен с внутренним при помощи реснички, состоящей из 9 пар периферических микротубул и одной пары центральных микротрубочек. Микротубулы прикрепляются к базальному тельцу. Во ВНУТРЕННЕМ ЧЛЕНИКЕ содержатся органеллы общего значения и ферменты. Палочки воспринимают чернобелый цвет и являются приборами сумеречного зрения. Количество палочковых нейронов в сетчатке глаза человека составляет около 130 миллионов. Длина наиболее крупных палочек достигае 75 мкм. КОЛБОЧКОВЫЕ ФОТОРЕЦЕПТОРНЫЕ НЕЙРОНЫ состоят из перикариона, аксона (центрального отростка) и дендрита (периферического отростка). Аксон вступает в синаптическую связь с ассоциативными нейронами сетчатки, дендрит заканчивается фоторецептором, называемым колбочкой. КОЛБОЧКИ отличаются от палочек по строению, форме и содержанию зрительного пурпура, который в колбочках назвается йодопсином. НАРУЖНЫЙ ЧЛЕНИК колбочки состоит из 1000 полудисков. Полудиски образуются путем впячивания цитолеммы наружного сегмента, не отшнуровываются от нее. Поэтому полудиски остаются соединенными с цитолеммой наружного сегмента. Наружный членик соединяется с внутренним при помощи реснички. ВНУТРЕННИЙ ЧЛЕНИК КОЛБОЧКИ включает органеллы общего значения, ферменты и эллипсоид, состоящий из липидной капли, окруженной плотным слоем митохондрий. Эллипсоиды играют определенную роль в цветном восприятии. Количество колбочковых фоторецепторных нейронов в сетчатке глаза человека около 6-7 миллионов, они являются приборами цветного зрения. В завтсимости от того, какой тип пигмента содержится в мембранах колбочек, одни из них воспринимают красный цвет, другие - синий, третьи - зеленый. При помощи комбинации этих трех типов колбочек человеческий глаз способен воспринимать все цвета радуги. Наличие или отсутствие того или иного пигмента в колбочках зависит от наличия или отсутствия соответствующего гена в половой Х-хромосоме. Если отсутствует пигмент, воспринимающий красный цвет - это называется протанопия, зеленый цвет - дейтеранопия.

ОБОНЯТЕЛЬНЫЕ КЛЕТКИ - это нейроны, у которых имеются дендрит и аксон. ДЕНДРИТ направляется на периферию, т. е. на поверхность обонятельного пятна и заканчивается утолщением - булавой. Булава покрыта подвижными ресничками, на цитолемме которых имеются рецепторные белки, воспринимающие запахи. Рецепторные белки захватывают молекулы пахучих веществ, которые растворяются и начинается химическая реакция, вызывающая изменение проницаемости цитолеммы и возникновение импульса. АКСОН обонятельной клетки через решетчатую кость направляется в составе пучков в обонятельную луковицу - подкорковый обонятельный центр ствола головного мозга, где находятся митральные нейроны. Аксоны митральных нейронов направляются в древнюю кору (гиппокамп) и в гипокампову извилину неокортекса (новой коры), где находится корковый обонятельный центр. В средней части обонятельных клеток расположено ядро, в нейроплазме имеются митохондрии, компдекс Гольджи, гранулярная ЭПС.

2 Вопрос. Поперечнополосатая скелетная мышечная ткань. Строение мышечного волокна. Саркомер. Строение мышцы как органа. Регенерация скелетной мышечной ткани.

Мышечные ткани классифицируются на гладкую и исчерченную, или поперечнополосатую. Поперечнополосатая подразделяется на скелетную и сердечную. В зависимости от происхождения мышечные ткани делятся на 5 типов: 1) мезенхимные (гладкая мышечная ткань); 2) эпидермалные (гладкая мышечная ткань); 3) нейральные (гладкая мышечная ткань); 4)целомические (сердечная); 5) соматические или миотомные (скелетная поперечнополосатая).

СТРОЕНИЕ МЫШЕЧНОГО ВОЛОКНА. Мышечное волокно (miofibra) состоит из 2 компонентов: 1) миосателлитоцитов и 2) миосимпласта. Мышечное волокно имеет примерно такую же длину, как и сама мышца, диаметр - 20-50 мкм. Волокно снаружи покрыто оболочкой - сарколеммой, состоящей из 2 мембран. Наружная мамбрана называется базальной мембраной, а внутренняя - плазмолеммой. Между этими двумя мембранами располагаются миосателлитоциты. ЯДРА МЫШЕЧНЫХ ВОЛОКОН располагаются под плазмолеммой, их количество может достигать нескольких десятков тысяч. Имеют вытянутую форму, не обладают способностью к дальнейшему митотическому делению. ЦИТОПЛАЗМА мышечного волокна называется САРКОПЛАЗМОЙ. В саркоплазме содержится большое количество миоглобина, включений гликогена и липидов; имеются органеллы общего значения, одни из которых развиты хорошо, другие - хуже. Такие органеллы как комплекс Гольджи, гранулярная ЭПС, лизосомы развиты слабо и располагаются у полюсов ядер. Хорошо развиты митохондрии и гладкая ЭПС. В мышечных волокнах хорошо развиты миофибриллы, являющиеся сократительным аппаратом волокна. В миофибриллах имеется исчерченность потому, что миофиламенты в них расположены в строго определенном порядке (в отличии от гладкой мускулатуры). В миофибриллах 2 вида миофиламентов: 1) тонкие актиновые, состоят из белка актина, тропонина и тропомиозина; 2) толстые миозиновые состоят из белка миозина. Актиновые филаменты располагаются продольно, их концы находятся на одинаковом уровне и несколько заходят между концами миозиновых филаментов. Вокруг каждого миозинового филамента расположено 6 концов актиновых филаментов. В мышечном волокне имеется цитоскелет, включающий промежуточные нити (филаменты), телофрагму, мезофрагму, сарколемму. Благодаря цитоскелету одинаковые структуры миофибрилл (актиновые, миозиновые филаменты и др. ) располагаются упорядоченно. Тот участок миофибриллы, в котором находятся только актиновые филаменты, называется диском I (изотропный или светлый диск). Через центр диска I проходит Z-полоска, или телофрагма толщиной около 100 нм и состоящая из альфа-актинина. К телофрагме прикрепляются актиновые нити (зона прикрепления тонких нитей). Миозиновые филаменты тоже располагаются в строго определенном порядке. Их концы также находятся на одном уровне. Миозиновые филаменты вместе с заходящими между ними концами актиновых филаментов образуют диск А (анизотропный диск, обладающий двулучепреломлением). Диск А также разделяется мезофрагмой, аналогичной телофрагме и состоящей из М-белка (миомизина). В средней части диска А имеется Н-полоска, ограниченная концами актиновых филаментов, заходящих между концами миозиновых нитей. Поэтому чем ближе концы актиновых филаментов расположены друг к другу, тем уже Н-полоска. САРКОМЕР - это структурная и функциональная единица миофибрилл, представляющая собой участок, расположенный между двумя телофрагмами. Формула саркомера: 1, 5 диса I + диск А + 1, 5 диска I.

 

СТРОЕНИЕ МЫШЦЫ КАК ОРГАНА. Каждая мышца тела человека представляет собой своеобразный орган, имеющий свою структуру. Каждая мышца состоит из мышечных волокон. Каждое волокно окружено тонкой прослойкой рыхлой соединительной ткани - эндомизием. В эндомизии проходят кровеносные и лимфатические сосуды и нервные волокна. Мышечное волокно вместе с сосудами и нервными волокнами называется «мион». Несколько мышечных волкон образуют пучок, окруженный слоем рыхлой соединительной ткани, называемой перимизием. Вся мышца окружена прослойкой соединительной ткани, называемой эпимизием.

РЕГЕНЕРАЦИЯ ПОПЕРЕЧНОПОЛОСАТОЙ СКЕЛЕТНОЙ МЫШЕЧНОЙ ТКАНИ. При повреждении (разрыве) мышечных волокон их концы на месте повреждения подвергаются некрозу. После разрыва к обрывкам волокон поступают макрофаги, которые фагцитируют некротизированные участки, очищая их от мертвой ткани. После этого процесс регенерации осуществляется 2 путями: 1) за счет повышения реактивности в мышечных волокнах и образования мышечных почек в местах разрыва; 2) за счет миосателлитоцитов. 1-й ПУТЬ характеризуется тем, что на концах разорванных волокон гипертрофируется гранулярная ЭПС, на поверхности которой синтезируются белки миофибрил, мембранных структур внутри волокна и сарколеммы. В результате этого концы мышечных волокон утолщаются и преобразуются в мышечные почки. Эти почки по мере их увеличения приближаются друг к другу от одного оборванного конца к другому, наконец почки соединяются и срастаются. Между тем за счет клеток эндомизия происходит новообразование соединительной ткани между растущими навстречу друг к другу мышечными почками. Поэтому к моменту соединения мышечных почек формируется соединительнотканная прослойка, которая войдет в состав мышечного волокна. Следовательно, формируется соединительнотканный рубец. 2-й ПУТЬ регенерации заключается в том, что миосателлитоциты покидают места своего обитания и подвергаются дифференцировке, в результате которой превращаются в миобласты. Часть миобластов присоединяется к мышечным почкам, часть соединяется в мышечные трубочки, которые дифференцируются в новые мышечные волокна. Таким образом, при репаративной регенерации мышц восстанавливаются старые мышечные волокна и образуются новые.

3 Вопрос. Периоды эмбриогенеза. Строение бластул и гаструляция у хордовых. Образование осевых зачатков органов у человека.

В развитии выделяют: историческое развитие организма (филогенез) и индивидуальное развитие организма (онтогенез). В онтогенезе выделяют эмбриогенез и постнатальное развитие.

Наиболее ранним методом изучения эмбриологии является описательный метод, затем сравнительный и экспериментальный (это, прежде всего, искусственное оплодотворение) методы.

В эмбриогенезе выделяют периоды:

- оплодотворение; (в конце зигота)

- дробление;

- гаструляция;

- гистогенез;

- органогенез;

- системогенез;

- формирование организма в целом.

Дробление приводит к образованию шарообразного зародыша – бластулы. Если образуется сплошной шар без полости внутри, то такой зародыш называют морулой. Образование бластулы или морулы зависит от свойств цитоплазмы. Бластула образуется при достаточной вязкости цитоплазмы, морула – при слабой вязкости. При достаточной вязкости цитоплазмы бластомеры сохраняют округлую форму и только в местах соприкосновения слегка сплющиваются. Вследствие этого между ними появляется щель, которая по мере дробления увеличивается, заполняется жидкостью и превращается в бластоцель. При слабой вязкости цитоплазмы бластомеры не округляются и располагаются тесно друг возле друга, щели нет и полость не образуется.

Гаструляция. Период гаструляции характеризуется активными перемещениями как отдельных клеток зародыша, так и клеточных масс, в результате которых у позвоночных формируются три основных пласта тела. Их называют зародышевыми листками: Эктодерма — Наружный зародышевый листок, Мезодерма -- Средний зародышевый листок И Энтодерма — Внутренний зародышевый листок (у низших хордовых в конце гаструляции образуется только два зародышевых листка — эктодерма и энтодерма). Зародышевые листки у разных животных являются гомологичными образованиями, т. е. в ходе развития они дают идентичные структуры. Так, например, эктодерма всегда преобразуется в наружный покров тела, а из энтодермы развивается выстилка средней кишки. Другая особенность периода гаструляции заключается в том, что образующиеся при делении клетки, в отличие от блас-томеров, начинают расти и увеличиваются до размеров материнской, при этом происходит активный рост и увеличение размеров самого зародыша. В ходе гаструляции продолжается усиление процессов детерминации клеток и интеграции частей зародыша.

Способы гаструляции, т. е - механизмы образования зародышевых листков, отличаются у разных животных и определяются во многом строением бластулы. Существуют Четыре основные способа гаструляции: Инвагинация (впячивание), Деляминация (расслоение, расщепление), Иммиграция (выселение) и Эпиболия (обрастание). В результате гаструляции возникает зародыш — гас-трула. Гаструла Имеет полость — Гастроцель (полость первичной кишки), в которую ведет отверстие — Бластопор (первичный рот).

В зависимости от дальнейшей судьбы бластопора в развитии все животные подразделяются на первичноротых и вторичноротых. У Первичноротых, К которым относится большинство беспозвоночных, на месте бластопора образуется ротовое отверстие, а противоположный конец становится задним концом тела. У Вторичноротых, Которые включают хордовых и некоторых беспозвоночных, бластопор преобразуется в анальное отверстие или в особый нервнокишечный канал, расположенный на заднем конце тела зародыша, а ротовое отверстие прорывается на брюшной стороне у противоположного конца тела. У бластопора различают края, или губы: дорсальную, латеральные и вентральную. Важным итогом гаструляции у хордовых является формирование в составе зародышевых листков так называемого осевого комплекса зачатков. Осевой комплекс зачатков представляет собой расположенные по оси тела зародыша зачатки нервной системы (нервная пластинка) и хорды (хордальная пластинка), а также лежащие латерально по отношению к хордальной пластинке и связанные с ней зачатки мезодермы. Тесно прилежащие друг к другу зачатки хорды и мезодермы часто называют хордомезо-дермой.

Существует несколько факторов гаструляции: физические, химические, а также особые организующие центры. К Физическим факторам Относится более быстрое деление мелких клеток по сравнению с более крупными, что приводит к обрастанию крупных клеток мелкими, как, например, в бластуле амфибий и рыб, имеющих телолецитальные яйцеклетки. В бластуле этих животных существует градиент распределения бластомеров по величине — их размеры уменьшаются по направлению от вегетативного полюса к анимальному. Такое же направление имеет метаболический градиент — с уменьшением размеров клеток повышается их метаболическая активность и темпы деления. Именно в областях активного деления клеток начинаются процессы их перемещения. Одной из причин перемещения клеток считают изменение поверхностного натяжения при увеличении числа клеток. Клетки при этом способны совершать активные амебоидные движения.

Направление движения клеток, а затем и их дифференцировка определяются индукцией — влиянием одних областей или зачатков зародыша на другие. Такие области и зачатки получили название Организующих центров, или индукторов. Теория организующих центров, выдвинутая Г. Шпеманом, устанавливает наличие у зародыша на разных стадиях его развития особых областей, оказывающих индуцирующее влияние на соседние участки.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...