Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Новая (количественная) школа




 

Еще одним направлением, закладывающим в основу своих исследований системный подход, является «новая» школа, которая развивает примене­ние для решения различных управленческих задач и в экономическом ана­лизе новейших математических методов. Она возникла в связи с необходи­мостью комплексного изучения и решения многовариантных задач. Облас­тью исследования ее главным образом является область принятия управ­ленческих решений. В частности, Р. Фэлк, американский теоретик управле­ния выдвинул семь принципов управленческой деятельности:

1. Необходимо четко определить, в чем заключаются административные обязанности, и перечислить, кто за что отвечает;

2. Каждое структурное подразделение (отдел, сектор, отделение) должно иметь основную обязанность;

3. Каждое структурное подразделение должно представлять собой орга­низационное целое, руководимое одним административным руководите­лем;

4. Количество сотрудников, подчиненных одному административному ра­ботнику, обычно должно составлять 5-8 человек, за исключением особых случаев;

5. Второстепенные обязанности следует группировать, с учетом тех воз­можностей, которыми обладают имеющиеся кадры, их задачи должны быть четко определены;

6. Необходимо проводить различия между непосредственными админи­стративными и функциональными обязанностями;

7. Необходимо в максимальной степени децентрализовать оперативную ответственность, одновременно принять меры для обеспечения «административного контроля».

Второе направление новой школы науки управления связано с развитием точных наук и, прежде всего, математики. Оно обусловлено широким вне­дрением в сферу управления количественных методов, из­вестных под общим названием исследование операций.

Начало применения математических методов в эко­номических исследованиях в XIX в. связывают с именем французского экономиста А. Каунота (1801 — 1877). По­явление первых экономико-математических моделей бы­ло вызвано разработкой теории предельного равновесия. Один из основателей этой теории Л. Вальрас создал мо­дель общего экономического равновесия. Математиче­ские методы широко используются также и в работах другого последователя теории предельной полезности -В.С. Джевонса. Впоследствии Ф.Г. Эджуорт, а затем и В. Парето разработали математические модели предпоч­тений потребителей.

Необходимо отметить вклад отечественных ученых и специалистов в развитие математической школы.

Возможность использования математики для реше­ния экономических проблем вызвала большой интерес в России. Российские специалисты в своих трудах под­вергали критическому анализу работы зарубежных эко­номистов-математиков (Вальраса, Курно, Парето и др.)

Наиболее крупным экономистом-математиком Рос­сии был В.К.Дмитриев (1866—1913), опубликовавший ряд работ, среди которых наибольшую известность полу­чили следующие: «Теория ценности Д.Рикардо. Опыт органического синтеза трудовой ценности и теория предельной полезности» (1898) и основной его научный труд — «Экономические очерки» (1904).

Особое место принадлежит Д.Е. Слуцкому (1880—1948) известному своими работами по теории вероятности и математической статистике. В 1915 г. он опубликовал статью «К теории сбалансированности бюджета потребителя», которая оказала большое влияние на развитие экономико-математической теории. Через 20 лет эта ста­тья получила мировое признание. В 1939 г. лауреат Но­белевской премии Д. Хикс в своей работе «Стоимость капитала» отметил значительный вклад Слуцкого в раз­витие математической школы. Работы Слуцкого оказали «великое и прочное» влияние» на развитие эконометрики — отмечал английский экономист-математик Р. Аллен в своей известной книге «Математическая экономика».

Слуцкий заложил основы науки об общих принципах рациональной организации деятельности людей — праксеологии, а также объединил идеи этой науки с идеями экономики. Слуцким написано ряд работ по использо­ванию математической статистики для анализа экономи­ческих проблем.

Следует отметить также вклад Г.А. Фельдмана (1884— 1958) в развитие экономико-математических методов. Так, идеи, содержащиеся в статьях Фельдмана, опубли­кованных в 1928—1929 гг. в журнале «Плановое хозяйст­во», намного опередили работы зарубежных экономистов в области использования математических методов в пла­нировании экономики. Являясь работником Госплана СССР, Фельдман исследовал зависимость темпов роста от доли накопления в национальном доходе и эффек­тивность накопления.

Большой вклад в разработку экономико-математи­ческих методов (ЭММ) внес академик Л.В. Канторович (1912—1986). Во время работы в Ленинградском универ­ситете он увлекся решением чисто практической задачи - возможностью выпуска максимально большого объема продукции при заданном ее ассортименте за счет опти­мального распределения сырья по разным обрабатываю­щим станкам. Решение этой задачи потребовало разра­ботки специального метода разрешающих множителей. Так, в 1938—1939 гг. Канторовичем была разработана новая область прикладной математики, которая позднее была названа линейным программированием. О нем ^ла речь в работе Канторовича «Математические мето­ды организации и планирования производства», которая была опубликована в 1939 г. В конце 40-х гг. в США линейное программирование было открыто заново Дж. Данцигом. Однако в настоящее время приоритет-Канторовича признан во всем мире; он является лауреа­том Нобелевской премии по экономике, которая была присуждена ему в 1975 г. совместно с американским ученым Т. Купмансом за исследования по оптимальному использованию ресурсов.

В указанной книге «Математические методы органи­зации и планирования производства» Канторович описал опыт применения линейного программирования для решения разнообразных задач (распределения работ между видами оборудования, раскроя материалов, составления плана перевозок, распределения посевных площадей ме­жду культурами и т. д.). В этой работе он впервые ввел понятие разрешающих множителей (позднее он назвал их «объективно обусловленными оценками») и установил их связь с оптимальным планом.

В конце 1942 г. Канторович пишет книгу «Экономи­ческий расчет наилучшего использования ресурсов», которая вышла в свет только через 18 лет. Позднее Кан­торович расширил сферу применения линейного про­граммирования, сформулировав задачи отраслевого и народнохозяйственного оптимального планирования для условий социалистической экономики.

В 30—40-е гг. в нашей стране экономико-математи­ческие исследования проводились также В. В. Новожило­вым, С. Г. Струмилиным, А. Л. Лурье.

Примерно в одно время с Канторовичем ленинград­ский экономист В.В. Новожилов (1692—1970) опублико­вал свою работу «Методы соизмерения народнохозяйст­венной эффективности плановых и проектных вариан­тов», внесшую существенный вклад в разработку теории оптимального планирования социалистической эконо­мики. В частности, он сформулировал задачу составле­ния оптимального народнохозяйственного плана, приняв в качестве критерия минимум трудовых затрат. Им же были разработаны принципы соизмерения затрат и результатов при оптимальном планировании.

Первая в стране Лаборатория экономико-математи­ческих методов была создана в 1958 г. в Академии наук В. С. Немчиновым (1894—1964). А в 1965 г. им была издана книга «Экономико-математические методы и моде­ли в которой были приведены основные направления использования ЭММ в экономике: оптимальное планирование, разработка межотраслевых и межрегиональных балансов, решение технико-экономических задач, проведение математического анализа и др.

Начиная с 1950-х гг. и по настоящее время математи­ческие методы получили широкое распространение в экономических исследованиях. Первые разработки по кибернетике и методам иссле­дования операций появились в середине 40-х гг. Перед разработчиками ставилась задача — исследовать процес­сы принятия решений на основе математических мето­дов и с помощью электронно-вычислительной техники, управленческие проблемы стали исследоваться по не­скольким направлениям: исследование операций, теория принятия решений, эконометрика и др.

Отличительной особенностью науки управления яв­ляется использование моделей. Модели приобретают осо­бенно важное значение, когда необходимо принимать решения в сложных ситуациях, требующих оценки не­скольких альтернатив. Р.Е. Шеннон дает следующее определение модели: «Модель — это представление объекта системы или идеи в некоторой форме, отличной от ямой целостности», т. е. от самого предмета.

На практике руководители организаций вынуждены прибегать к моделированию в силу сложности многих организационных ситуаций, из-за невозможности проведения экспериментов или необходимости спрогнозиро­вать будущее. Различают физические, аналоговые и ма­тематические (символические) модели.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...