Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Ряды распределения, их виды, графическое изображение (полигон, гистограмма, кумулята)




В результате обработки и систематизации первичных статистических материалов получаются ряды цифровых статистических показателей, которые характеризуют отдельные стороны изучаемых явлений. Эти ряды называются статистическими.

Статистические ряды бывают двух видов: ряды распределения и ряды динамики (рис. 1).

 

Статистические ряды

Ряды распределения Ряды динамики

 
 

Атрибутивные Вариационные

       
   

Дискретные Непрерывные

(Интервальные)

Рисунок 1 – Виды рядов распределения

 

Ряды распределения – это ряды, которые характеризуют распределение единиц совокупности по какому-либо признаку (например, распределение производственного оборудования по видам и срокам службы). Ряд распределения состоит из двух элементов: вариант – значений группировочного признака и частот – число повторений отдельных вариантов значений признака.

Ряд распределения – группировка, в которой для характеристики групп, упорядоченно расположенных по значению признака, применяется только один показатель - численность групп.

Частоты, представленные в относительном выражении, называют частостями и обозначают .

Например, вместо абсолютного числа рабочих, имеющих определённый разряд, можно установить долю рабочих этого разряда. Частости могут быть выражены в долях единицы или в процентах. Замена частот частостями позволяет сопоставить вариационные ряды с различным числом наблюдений.

По характеру вариации различают дискретные и непрерывные признаки. Дискретные признаки отличаются друг от друга на некоторую конечную величину, то есть даны в виде прерывных чисел. Например, тарифный разряд рабочих, количество детей в семье, число рабочих на предприятии. Непрерывные признаки могут отличаться один от другого на сколь угодно малую величину и в определённых границах принимать любые значения. Например, заработная плата рабочих, стоимость основных фондов предприятия.

Атрибутивный ряд распределения образуется по качественному признаку (распределение рабочих по профессиям, машин – по маркам). Вариационный ряд распределения образуется по количественному признаку. Он состоит из вариант и частот. В дискретном ряде распределения отдельные варианты имеют определённые значения (распределение рабочих по разрядам). В тех случаях, когда число вариантов дискретного признака достаточно велико, а также при анализе вариации непрерывного признака, когда значения этого признака у отдельных единиц могут вообще не повторяться, строятся интервальные ряды распределения. Интервал указывает определённые пределы значений варьирующего признака и обозначается верхней и нижней границей интервала.

Различают ряды распределения с абсолютными, относительными и накопленными частотами. Накопленные частоты называют кумулятивными.

Если приведён вариационный ряд с неравными интервалами, то для правильного представления о характере распределения необходимо рассчитать плотность распределения. Плотность распределения – это количество единиц совокупности, приходящихся на единицу величины интервала группировочного признака. Различают абсолютную () и относительную () плотность:

,

,

где – частота;

– удельный вес;

– размер интервала.

По форме ряды распределения бывают одно- двух- и многовершинными. Среди одновершинных распределений есть симметричные и асимметричные (скошенные), остро- и плосковершинные.

Графическое изображение рядов распределения облегчает их анализ и позволяет судить о форме распределения.

Для графического изображения дискретного ряда применяют полигон распределения. Полигон чаще всего используют для изображения дискретных рядов. Полигоном частот называют ломаную, отрезки которой соединяют точки с координатами (xi,mi), где xi – варианты выборки и mi – соответствующие им частоты. Если полигон строят по данным интервального ряда, то в качестве абсцисс точек берут середины соответствующих интервалов.

Для построения полигона в прямоугольной системе координат в произвольно выбранном масштабе на оси абс­цисс откладывают значения аргумента (вари­анты), а на оси ординат – значения час­тот. Масштаб выбирают такой, чтобы была обеспечена необходимая наглядность и желательный размер рисунка. Далее строят точки с координатами (xi,mi) и последовательно соединяют их отрезками прямой.

Рисунок 2 – Полигон распределения

 

Для графического изображения интервальных вариационных рядов применяются гистограммы. Она строится так: на оси абсцисс откладываются равные отрезки, которые в принятом масштабе соответствуют величине интервалов вариационного ряда. На отрезках строят прямоугольники, площади которых пропорциональны частотам (или частностям) интервала.

Гистограмма может быть преобразована в полигон распределения, если середины верхних сторон прямоугольников соединяются отрезками прямых. Две крайние точки прямоугольников замыкаются по оси абсцисс на середины интервалов, в которых частоты (частности) равны нулю. При построении гистограммы для вариационного ряда с неравными интервалами следует по оси ординат наносить показатели плотности интервалов (абсолютные или относительные). В этом случае высоты прямоугольников гистограммы будут соответствовать величине плотности распределения.

Рисунок 3 – Гистограмма

 

При увеличении числа наблюдений из одной и той же совокупности увеличивается число групп интервального ряда, что приводит к уменьшению величины интервала. При этом ломанная линия имеет тенденцию превращения в плавную кривую, которую называют кривой распределения. Кривая распределения характеризует в обобщенном виде вариацию признака и закономерности распределения частот внутри однокачественной совокупности.

Кумулята или кривая накопленных частот в отличие от полигона строится по накопленным частотам или частостям. При этом на оси абсцисс помещают значения признака, а на оси ординат – накопленные частоты или частости (рисунок 4).

Накопленной частоты, т. е. число значений, которые попали в этот интервал и все предшествующие.

Рисунок 4 – Кумулята (кривая накопленных частот)

 

Следует отметить, что кривая накопленных частот не убывает ни на одном участке.

Пример построения группировки рассмотрим в примерах 1 и 2.


Пример 1

Оборот и издержки обращения тридцати торговых предприятий за отчетный период составили (тыс. руб.):

Магазины, № п/п Оборот Издержки обращения
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     

 

Для выявления зависимости между размером оборота и издержками обращения произведите группировку магазинов по размеру оборота, образовав пять групп магазинов с равными интервалами. В каждой группе и в целом подсчитайте:

1) число магазинов;

2) размер оборота – всего и в среднем на один магазин;

3) издержки обращения – всего и в среднем на один магазин;

4) структуру товарооборота по группам и структуру издержек обращения;

5) уровень издержек обращения

УИО= Издержки обращения ×100%.
Товарооборот

6) Решение оформите в разработочной и групповой таблицах. Сделайте выводы, укажите вид группировки. Постройте гистограмму и преобразуйте её в полигон. Постройте кумуляту (кривую накопленных частот).

Решение:

Составим вариационный ряд распределения, упорядочив магазины по товарообороту от большего к меньшему.

Магазины, № п/п Оборот Издержки обращения Магазины, № п/п Оборот Издержки обращения
7 341 160      
11 456 242 19 1199 635
      5 1326 623
           
           
           
           
           
           
           
           
           
           
           
           

Определим величину интервала:

, где

i – величина интервала;

n – число групп (в данной задаче 5 группы);

Xmax, Xmin – максимальное и минимальное значение признака (1700 и 341 соответственно).

Величина интервала составит:

Определим границы интервалов:

Интервал Нижняя граница Верхняя граница
1-й   341 + 271,8 = 612,8
2-й 612,8 612,8 + 271,8 = 884,6
3-й 884,6 884,6 + 271,8 = 1156,4
4-й 1156,4 1556,4 + 271,8 = 1428,2
5-й 1428,2 1428,2 + 271,8 = 1700

 

Разнесем по выделенным интервалам предприятия (разработочная таблица):

 

Группы предприятий по величине оборота Номера предприятий Число предприятий
341-612,8 7,11  
612,8-884,6 21, 24, 17, 22, 25, 18  
884,6-1156,4 27, 12, 13, 1, 9, 14, 6, 15  
1156,4-1428,2 19, 5  
1428,2-1700 2, 30, 20, 16, 10, 29, 3, 28, 23, 4, 8, 26  

Определим в каждой группе и в целом объем оборота – всего и в среднем на один магазин и издержки – всего и в среднем на один магазин, для чего составим группировочную таблицу:

Группы предприятий по величине оборота Число предприятий в группе Суммарный товарооборот в группе Средний товарооборот по группе Суммарные издержки обращения по группе Средние издержки обращения по группе Уровень издержек обращения по группе, %
А (1) (2) (3)=(2)/(1) (4) (5)=(4)/(1) (6)=(4)/(2)*100
341-612,8     398,5     50,44
612,8-884,6     744,5   345,5 46,41
884,6-1156,4     998,75   482,625 48,32
1156,4-1428,2     1262,5     49,82
1428,2-1700         687,417 43,65
Итого     34679/30= 1155,97   15843/30= 528,1 528,1/1155,97*100 = 45,68

На основании проведенных расчетов построим гистограмму и полигон.

При построении гистограммы по оси Х откладывают значения признака (границы интервалов), а по оси Y – частоты. Для соответствующего интервала строиться прямоугольник, высота которого соответствует частоте признака (рисунок 5).

 

Рисунок 5 – Гистограмма

 

Гистограмма может быть преобразована в полигон, если середины верхних граней прямоугольника соединить прямой линией (рисунок 6).

 

 

Рисунок 6 – Полигон распределения

 

Также построим кумуляту или кривую накопленных частот. В этом случае по оси Х откладываем интервалы признака, а по оси Y – накопленные частоты (это количество единиц совокупности, имеющие значения признака меньше указанного). Накопленные частоты рассчитаны в таблице.

 

Группы предприятий по величине оборота Число предприятий в группе Накопленные частоты
341-612,8    
612,8-884,6   2+6=8
884,6-1156,4   8+8=16
1156,4-1428,2   16+2=18
1428,2-1700   18+12=30

Кривая накопленных частот представлена на рисунке 7.

 

 

Рисунок 7 – Кривая накопленных частот

Вывод: Суммарный товарооборот в первой группе 797 тыс. руб., во второй – 4467 тыс. руб., в третьей – 7990 тыс. руб., в четвертой – 2525 тыс. руб., в пятой – 18900 тыс. руб. Средний товарооборот на один магазин в первой группе 398,5 тыс. руб., во второй – 744,5 тыс. руб., в третьей – 998,75 тыс. руб., в четвертой – 1262,5 тыс. руб., в пятой – 1575 тыс. руб.

Суммарные издержки обращения в первой группе 402 тыс. руб., во второй – 2073 тыс. руб., в третьей – 3861 тыс. руб., в четвертой – 1258 тыс. руб., в пятой – 8249 тыс. руб. Средний издержки обращения в первой группе 201 тыс. руб., во второй – 345,5 тыс. руб., в третьей – 482,625 тыс. руб., в четвертой – 629 тыс. руб., в пятой – 687,417 тыс. руб.

На основании полученных значений можно сделать вывод о прямой зависимости между размером оборота и средними издержек обращения: при росте размера оборота средние издержки обращения увеличиваются. На основании анализа уровня издержек обращения можно сделать вывод, что наиболее конкурентны предприятия пятой группы, поскольку у них уровень издержек ниже среднего.

 

Пример 2

По данным таблицы постройте ряды распределения домохозяйств, рассчитав число домохозяйств, входящих в те или иные группы:

а) по числу совместно проживающих человек (1,2,3,4 и более)

б) по среднему размеру доходов на душу населения в месяц (образовав 5 групп с равными интервалами)

в) по статусу занятости главы семьи.

№ п/п Число членов в семье Статус главы семьи по месту в занятости Среднемесячный доход на душу, руб.
1.   Самозанятость  
2.   По найму  
3.   По найму  
4.   По найму  
5.   По найму  
6.   Нет работы  
7.   Нет работы  
8.   Самозанятость  
9.   Нет работы  
10.   По найму  
11.   По найму  
12.   По найму  
13.   Самозанятость  
14.   По найму  
15.   По найму  
16.   По найму  
17.   По найму  
18.   Нет работы  
19.   Нет работы  
20.   Самозанятость  
21.   Нет работы  
22.   По найму  
23.   По найму  
24.   По найму  
25.   По найму  
26.   По найму  
27.   Самозанятость  
28.   Нет работы  
29.   По найму  
30.   По найму  
Итого   - -

 

Решение:

Построим ряды распределения домохозяйств, рассчитав число домохозяйств, входящих в те или иные группы:

Общее число семей, имеющих разный статус глав семей по месту в занятости, представлено в таблице. В этом случае группировка строиться по качественному признаку. Число групп совпадает с числом признаков: самозанятость, по найму, нет работы.

Статус главы семьи по месту в занятости Число семейств
По найму  
Нет работы  
Самозанятость  
Итого  

 

Общее число глав семей, имеющих разный статус по месту в занятости (са Общее число семей, имеющих разный статус глав семей по месту в занятости, представлено в таблице. В этом случае группировка строиться по качественному признаку. Число групп совпадает с числом признаков: самозанятость, по найму, нет работы.

Группировка по числу совместно проживающих человек (1,2,3,4 и более), представлено в таблице. В этом случае группировка строиться по количественному дискретному признаку.

 

Число членов в семье Число семейств Доля, %
     
     
     
4 и более    
Итого   100,0

 

Таким образом, 33% всех обследованных семей состоят из трех человек. 13% семей состоят из 4 и более человек. Доли семей, состоящих из 1 человека – 17%, из 2 человек – 37%.

Построим группировку по среднему размеру доходов на душу населения в месяц (образовав 5 групп с равными интервалами);

На начальном этапе проранжируем ряд от меньшего к большему:

Номер домохозяйства Среднемесячный доход на душу, руб. Номер домохозяйства Среднемесячный доход на душу, руб.
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       

Определим величину интервала по формуле:

, где

i – величина интервала;

n – число групп (в данной задаче 5 группы);

Xmax, Xmin – максимальное и минимальное значение признака.

Величина интервала составит:

Разнесем по выделенным интервалам домашние хозяйства:

Группы домашних хозяйств по величине среднемесячного дохода на душу Число домашних хозяйств Доля, %
2140-4800    
4800-7460    
7460-10120    
10120-12780    
12780-15440    
Итого    

 

Это и будет интервальный ряд распределения.

Рисунок 8 – Гистограмма распределения

 

Таким образом, в 50% всех обследуемых домашних хозяйствах среднедушевой доход составляет от 4800 рублей до 7460 рублей на человека. Доход от 2140 до 4800 рублей на человека наблюдается в 16% всех семей. Доход от 7460 до 10120 рублей на человека наблюдается в 20% всех обследованных семей. Доля семей, где среднедушевой доход составляет от 10120 до 12780, а также от 12780 до 15440 рублей, равна 7%.

 

 


Вопросы для самопроверки

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...