Расчётно-графическая работа
⇐ ПредыдущаяСтр 4 из 4 «Линейная алгебра и аналитическая геометрия» Задание 1. Найти область решения системы неравенств. Сделать чертеж. 1.
4.
7.
10.
13.
16.
19.
22.
25. Задание 2. Решить систему уравнений двумя способами: 1) методом Гаусса; 2) матричным методом.
Задание 3. Дана пирамида 1) угол между ребрами 2) уравнение плоскости 3) уравнение и длину высоты, опущенной из вершины 4) угол между ребром 5) объем пирамиды 6) площадь грани. Сделать чертеж.
Задание 4. Даны векторы Показать, что векторы
Задание 5. Привести уравнение кривой второго порядка к каноническому виду. Сделать чертеж. Найти координаты вершин и фокусов. Построить директрисы кривой.
Задание 6. Дано комплексное число
Задание 7. Найти собственные векторы линейного преобразования, приводящего квадратичную форму к каноническому виду. Установить вид кривой и сделать чертеж. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30.
Пример выполнения варианта расчетно-графической работы. Задание 1. Найти область решения системы неравенств. Сделать чертеж.
Решение. Заменим в данной системе каждое неравенство равенством. По полученным уравнениям построим прямые. Каждая прямая разделит плоскость на две полуплоскости, в одной из которых выполняется неравенство, в другой - нет. Часть плоскости, в которой выполняются все неравенства и есть область решения.
Рис.1
Ответ. Областью решения служит четырехугольник
Задание 2. Решить систему уравнений двумя способами: 1) Методом Гауcса 2) Матричным методом.
Решение. Вычислить определитель системы ∆: ∆= Следовательно, система имеет единственное решение. Решим систему методом Гаусса. Составим расширенную матрицу, и, применяя элементарные преобразования, приведем ее к диагональному виду
Проверка:
Решим систему матричным методом. Составим обратную матрицу А-1. Вычислим алгебраическое дополнение Аίj:
Ответ: Задание 3. Дана пирамида Найти: 1) угол между ребрами 2) уравнение плоскости 3) уравнение и длину высоты, опущенной из вершины 4) угол между ребром 5) объем пирамиды; 6) площадь грани Решение. 1) Найти координаты векторов
Вычислим косинус угла
2) Запишем уравнение плоскости, проходящей через три точки:
Уравнение плоскости 3) Вычислим векторное произведение векторов
Так как вектор векторного произведения перпендикулярен плоскости
Найдем координаты точки
Уравнение высоты запишем в параметрической форме и решим систему:
Вычислим длину высоты
Уравнение высоты
Длинна 4)Вычислим синус угла между ребром
5)вычислим объем пирамиды
7) Вычислим площадь грани
Сделаем чертеж:
Рис. 2
Задание 4. Даны векторы Показать, что векторы
Решение. Три вектора образуют базис в пространстве, если они некомпланарны. Условием компланарности трех векторов служит равенство Вычислим смешенное произведение:
Следовательно, векторы образуют базис. Найдем координаты вектора Разложение вектора Переходя к координатам записи, получим:
Решим систему по формуле Крамера: ∆ = 9 Найдем вспомогательные определители:
Искомое разложение имеет вид:
Задание 5. Привести уравнение кривой к каноническому виду. Сделать чертеж. Найти координаты фокусов и вершин.
Решение. Выделим полные квадраты по
Полученное уравнение - уравнение гиперболы. Центр симметрии в точке 0(0: 3). Действительная полуось гиперболы
Получим координаты фокусов:
Координаты вершин:
Рис.3 Задание 6. Дано комплексное число
Решение. Запишем комплексное число в алгебраической форме:
Найдем модуль комплексного числа:
Решим уравнение: Запишем число z в тригонометрической форме:
По правилу извлечения корня третьей степени из z,получим:
Изобразим схематически полученные результаты.
Алгебраическая форма:
|
|
|
