Способы получения трансгенных многоклеточных организмов
Многоклеточный организм высших животных и растений является продуктом онтогенетического развития, при котором из одной клетки (зиготы), образовавшейся в результате слияния двух половых клеток родителей (гамет), путем большого числа дроблений образуется вся совокупность высокодифференцированных клеток органов и тканей организма. Поскольку любая соматическая клетка или клетка зародышевого пути, в конечном счете, берет свое начало от двух объединившихся родительских клеток, она, как правило, заключает в себе всю (или большую часть) генетическую информацию родительских организмов. Несмотря на то что эта схема является упрощенной и по мере развития дифференцированного состояния соматических клеток их генетический материал часто претерпевает необратимые перестройки (например эритроциты человека вообще лишены ядер), такая картина подчеркивает преемственность генетического материала в рядах клеточных поколений соматических клеток организмов. Почти все гены зигот имеют хорошие шансы быть представленными в большинстве соматических клеток организма и принять участие в формировании их генотипа и фенотипа. Предпосылки такого рода привели к мысли о возможности изменения фенотипа многоклеточных организмов путем введения новых рекомбинантных генов в геном зигот, еще не претерпевших дробления в раннем эмбриональном развитии. В случае объединения с геномом зиготы новые гены должны распространиться в ряду клеточных поколений соматических клеток и экспрессироваться в большинстве этих клеток. Поскольку, с известными ограничениями, весь многоклеточный организм можно рассматривать как клон соматических клеток, произошедших от единственной клетки, распространение рекомбинантных генов, введенных в зиготу, в соматических клетках организма допустимо рассматривать как разновидность молекулярного клонирования последовательностей ДНК.
Такой молекулярно-генетический подход к изменению генотипа и фенотипа многоклеточных организмов был реализован экспериментально в середине 1970-х годов. Заражение мышиных эмбрионов на предимплантационной стадии развития вирусом лейкоза мышей (MuLV) приводило к образованию взрослых особей, содержащих вирусную ДНК, интегрированную в геном как соматических клеток, так и клеток зародышевого пути, и эта ДНК передавалась из поколения в поколение. Гены, искусственно введенные в геном многоклеточных организмов и передающиеся от родителей потомству, получили название трансгенов, процесс такого введения и передачи генов обозначили трансгенозом, а животные или растения, содержащие трансгены в геноме своих клеток, стали называть трансгенными. Развитие техники создания трансгенных животных и растений привело к возникновению нового быстро развивающегося направления молекулярной генетики. Были получены уникальные знания об особенностях экспрессии генов и биосинтезе белков в онтогенезе многоклеточных организмов, а также о возможности изменения фенотипа трансгенных организмов, в том числе и коррекции мутантного фенотипа, и использования трансгенных организмов для решения задач биотехнологии, связанных с биосинтезом рекомбинантных белков. Для получения трансгенных животных в настоящее время применяют три основных метода. Во всех методах рекомбинантные гены в составе векторных молекул вводятся в клетки эмбрионов на ранних стадиях их развития. Наиболее популярным и эффективным методом является прямая микроинъекция нескольких сотен копий линеаризованных молекул рекомбинантной ДНК в пронуклеусы оплодотворенных яйцеклеток. Для этого мышей-самок скрещивают с самцами-производителями и через 12 ч после спаривания вскрывают их яйцеводы, выделяют оплодотворенные одноклеточные яйца и помещают их в культуральную жидкость. В пронуклеусы оплодотворенных яиц с помощью микроманипулятора вводят очищенную ДНК, и прооперированные яйца пересаживают в яйцеводы псевдобеременных реципиентных самок. Некоторая часть жизнеспособных трансплантированных яиц проходит в организме мышей полный пренатальный цикл развития, после чего развившиеся детеныши рождаются естественным путем или с использованием кесарева сечения. Трансгенных животных идентифицируют в помете гибридизацией по Саузерну высокомолекулярной ДНК тканей хвостов с соответствующими зондами, далее трансгенные животные скрещивают друг с другом для получения чистых линий и анализируют экспрессию трансгенов. Приблизительно у 70% трансгенных мышей экзогенная рекомбинантная ДНК имеется во всех соматических клетках и клетках зародышевого пути. Это свидетельствует о том, что у них интеграция рекомбинантной ДНК в хромосомы прошла до прохождения первого цикла их репликации в оплодотворенной яйцеклетке. У остальных 30% трансгены содержат лишь часть соматических клеток, т.е. они являются мозаиками, причем у некоторых трансгенных животных клетки зародышевого пути становятся дефектными, а сами животные – бесплодными. Как правило, трансгены стабильно передаются из поколения в поколение без существенных изменений. Однако в ряде случаев отмечены их перестройки, образование делеций и амплификация. Кроме непосредственной микроинъекции в пронуклеусы используют введение рекомбинантной ДНК в цитоплазму или ядра двухклеточных эмбрионов, а также в полость бластоцеля зародышей.
Прямая микроинъекция рекомбинантных генов в клетки высокоэффективна, однако методически сложна и требует дорогостоящего оборудования. Более простым способом доставки чужеродных генов в геном животного-реципиента является использование векторов на основе вирусов. В этом случае эмбрионы на ранней (восьмиклеточной) стадии развития инкубируют в культуральной среде в присутствии фибробластов, в которых образуются рекомбинантные ретровирусы, и после заражения такими вирусами эмбрионы пересаживают псевдобеременным самкам мышей, где они продолжают свое развитие. Кроме простоты одним из преимуществ данного способа введения ДНК является то, что в геном клеток зародышей интегрируется, как правило, одна копия исследуемого гена, фланкированного длинными концевыми повторами вирусной хромосомы, что может способствовать эффективной экспрессии гена. Однако к недостаткам метода следует отнести необходимость проведения дополнительных генно-инженерных манипуляций при подготовке ретровирусного вектора, ограниченную емкость вектора (размер вставки – до 10 т.п.о.) и мозаицизм образующихся трансгенных животных, которые состоят из клеток как содержащих, так и не содержащих трансгены.
Наконец, следует упомянуть еще об одном способе введения рекомбинантных генов в клетки зародышевой линии животных, при котором используют плюрипотентные (дифференцирующиеся по разным направлениям) эмбриональные стволовые клетки линий ES и EK, предшественники которых были взяты из бластоцисты зародышей мышей. Рекомбинантные гены вводят в такие клетки любым из вышеупомянутых способов, а кроме того, электропорацией или другими стандартными методами, применяемыми для доставки генов в культивируемые соматические клетки. При этом вместе с исследуемыми генами возможно введение селектируемых маркеров, которые позволяют проводить отбор клеток, экспрессирующих данные маркеры и, следовательно, гарантированно содержащих сцепленные с ними исследуемые гены. Отобранные таким образом клетки переносят в бластоцисты развивающихся эмбрионов или используют для получения агрегационных химер объединением их с клетками восьмиклеточных эмбрионов с последующей пересадкой эмбрионов псевдобеременным самкам.
Экспрессия трансгенов Если трансгены в своем функционировании проявляют тканеспецифичность, то уровень их экспрессии зависит от места интеграции в хромосому. В тех редких случаях, когда экспрессия трансгена полностью отсутствует, это объясняют его интеграцией в гетерохроматиновые участки хромосом, неактивные в отношении транскрипции, или другими эффектами положения. Поскольку уровень экспрессии трансгенов у некоторых трансгенных мышей может превышать таковой у его эндогенного гомолога, делают вывод об отсутствии необходимости в точной локализации гена на хромосоме для его эффективной экспрессии. Тканеспецифический характер экспрессии генов обеспечивают, главным образом, их энхансеры – цис- действующие регуляторные последовательности нуклеотидов, которые располагаются как внутри, так и вне генов на значительном удалении от них (см. рис. I.30). Обнаружены гены, экспрессирующиеся в клетках только одного типа (строгая тканеспецифическая экспрессия), в клетках немногих тканей и в клетках многих или большинства типов (так называемые гены "домашнего хозяйства"). В том случае, если энхансеры обеспечивают абсолютный тканеспецифический характер экспрессии, контекст окружающих трансген последовательностей нуклеотидов хромосомы оказывает влияние на уровень его экспрессии только в клетках одного типа. Если же энхансеры дают возможность функционировать трансгену в клетках разных тканей, то уровень экспрессии будет варьировать в клетках этих тканей даже при интеграции в геном единственной его копии.
Обнаружена слабая корреляция между числом копий трансгенов, тандемно интегрированных в геном животного, и суммарным уровнем их экспрессии. Это указывает на функциональную активность лишь немногих трансгенов из всего кластера их множественных копий. Таким образом, данные, полученные к настоящему времени, указывают на то, что экспрессия рекомбинантных генов у трансгенных животных в большой степени напоминает таковую, происходящую в природных условиях в гомологичном генетическом окружении. Объединение структурных частей рекомбинантных генов с конкретными регуляторными последовательностями организма-реципиента позволяет получать строго детерминированную, тканеспецифическую экспрессию этих генов в процессе трансгеноза.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|