Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Ортогональная геометрия взаимодействия световых волн в фоторефрактивном кристалле




Введение

 

Регистрация колебаний и смещений микрообъектов является важнейшей задачей при разработке, создании и применении различных осцилляторов, резонаторов, микро- и нано- электромеханических систем. Такие системы применяются в химии и биологии, служат датчиками физических величин, например, для измерения малых и сверхмалых масс [1-3].

Особенностью исследования микрообъектов, микромеханических систем является то, что амплитуда собственных колебаний не превышает десятков нанометров, при этом сами объекты и измерительная система в целом подвергаются неконтролируемым шумовым воздействиям внешней среды.

Интерферометрические измерительные системы являются наиболее чувствительными инструментами для исследования широкого класса физических величин, в том числе параметров механических колебаний объектов. Вместе с тем высокая чувствительность любого интерферометра делает его в значительной степени подверженным влиянию внешних факторов (изменению температуры, давления, неконтролируемых деформаций, микросейсмических вибраций и пр.)

Для исследования механических параметров микрообъектов в настоящей работе был применен адаптивный интерферометр, основанный на использовании двухволнового взаимодействия в фоторефрактивных кристаллах [4]. Адаптивные интерферометры являются высокоэффективными системами измерения малых фазовых изменений в условиях неконтролируемых воздействий окружающей среды. Под высокой эффективностью адаптивного интерферометра понимается высокая чувствительность и высокая помехозащищенность, обеспечиваемые интерферометрическим принципом измерения, голографическим принципом восстановления фронта световой волны (включая, сколь угодно сложные, например, спекловые) и адаптивными свойствами динамической голограммы, используемой для объединения световых пучков [5].

Таким образом, применение адаптивного интерферометра позволяет обеспечить стабильность параметров измерительной системы, а так же, благодаря постоянной перезаписи динамической голограммы в фоторефрактивном кристалле, осуществить фильтрацию низкочастотных шумов.

Целью данной работы является разработка, практическая реализация и исследование системы регистрации малых колебаний микрообъектов на основе адаптивного интерферометра.

 


Теоретические основы

Принцип действия адаптивного интерферометра

 

Отличие адаптивного интерферометра от классического заключается в том, что в первом вместо обычного светоделительного элемента (куба или зеркала) используется среда, в которой постоянно записывается динамическая голограмма [5].

Формирование голограммы происходит в фоторефрактивном кристалле непосредственно при попадании на него оптического излучения. Дополнительная обработка (проявление, фиксация и т.п.) не требуется. Таким же образом, при помощи света голограмма может быть стерта. Свет вызывает внутри кристалла перераспределение зарядов, и в течение характерного времени (времени записи) устанавливается динамическое равновесие между распределениями интенсивности записывающего света и электрического заряда. Если параметры световых волн, формирующих голограмму, изменяются быстро, за время меньше времени записи, то голограмма не успевает следовать за ними. К «быстрым» здесь следует отнести изменения, вызванные воздействием исследуемого объекта (или физической величины). Для таких изменений голограмма будет «заморожена» (аналог статической голограммы), что обеспечит преобразование на ней световых волн и получение информации об объекте.

В противном случае, если параметры световых волн меняются медленно (за время, превышающее характерное время записи), что, как правило, характерно для большинства температурных влияний или, например, медленного накопления механических напряжений в исследуемом объекте, то в кристалле запишется новая голограмма, заменив старую. Как следствие, изменения параметров световых волн, а, следовательно, и отрицательное влияние внешних факторов на измерительную систему будут компенсированы изменениями, произошедшими в голограмме. В этом заключается общий принцип адаптивности измерительной системы на основе применения динамических голограмм. Таким образом, динамическая голограмма является своего рода фильтром низких частот, что позволяет компенсировать влияние на интерферометр любых медленно изменяющихся внешних воздействий.

 

Фоторефрактивный эффект

адаптивный интерферометр световая волна

Запись голограммы происходит в фоторефрактивном кристалле. В основе процесса записи голограммы лежит фоторефрактивный эффект (ФРЭ), заключающийся в изменении коэффициента преломления среды под действием света. ФРЭ впервые был обнаружен в Лаборатории Бэлл в 1966 г. как нежелательное искажение оптического луча при прохождении через нелинейные электрооптические кристаллы LiNbO3 и LiTaO3 [6]. Было установлено, что вызванные светом изменения показателя преломления кристалла приводят к искажению фронта распространяющейся в нем световой волны и, как следствие, ограничение использования этих материалов в системах генерации второй гармоники или высокоскоростных модуляторах. Вскоре после открытия фоторефрактивного эффекта было обнаружено, что фоторефрактивный кристалл может быть возвращен в исходное состояние нагревом или равномерной засветкой. Таким образом, фоторефрактивный кристалл может быть использован для записи и стирания в реальном времени голограмм, которые теперь могут стать динамическими. К настоящему времени фоторефрактивный эффект обнаружен в большом количестве материалов: диэлектриках, полупроводниках, жидких кристаллах, органических полимерах [7-10].

Для возникновения фоторефрактивного эффекта в некотором материале последний должен обладать фотопроводящими свойствами и быть электрооптическим. В простейшей модели фоторефрактивного эффекта предполагается, что кристалл имеет носители заряда одного типа – электроны – и примеси двух типов – доноры и акцепторы, энергетические уровни которых располагаются в запрещенной зоне, как показано на рисунке 1. Предполагается, что некоторые доноры и все акцепторы ионизированы. В отсутствии светового излучения основным механизмом, пополняющим зону проводимости электронами, является тепловое возбуждение. Динамическое равновесие между теплогенерацией электронов и их обратной рекомбинацией определяет концентрацию свободных электронов ne, которая в большинстве случаев является однородной по объему кристалла величиной или ее флуктуациями можно пренебречь.

 

Рис 1. Модель фоторефрактивного эффекта. Электроны возбуждаются светом с донорных уровней (D) в зону проводимости, где они диффундируют и дрейфуют в электрическом поле до тех пор, пока не будут захвачены акцепторами (А) или ионизированными донорами

 

Попадание светового излучения в фотопроводящий кристалл приводит к возникновению в нем дополнительных (фотоиндуцированных) пар электронов и ионизированных доноров. Фотоиндуцированные электроны, диффундировавшие в слабоосвещенные области, захватываются там акцепторами. В то же время, ионизированные доноры не могут двигаться, являясь частью кристаллической решетки, что ведет к локальным нарушениям электронейтральности. Возникает так называемый пространственный заряд, плотность распределения которого неоднородна и повторяет интерференционное распределение интенсивности света. Нескомпенсированный заряд приводит к появлению электрического поля , называемого полем пространственного заряда. Под действием этого поля все свободные электроны (как индуцированные светом, так и термически) начинают дрейфовать, формируя электрический ток.

В свою очередь, электрическое поле , возникшее внутри фоторефрактивного кристалла, приводит к изменению его показателя преломления в силу наличия у него электрооптических свойств.

Объектный и опорный световые пучки, интерференция которых создает голограмму, одновременно дифрагируют на ней так, что дифрагировавшая часть объектного пучка распространяется в направлении опорного пучка и наоборот. Благодаря основному принципу голографии волновой фронт дифрагировавшей части опорного пучка представляет точную копию недифрагировавшей части объектного пучка. То же остается справедливым для другой пары пучков в кристалле. В результате после кристалла в направлении каждого пучка мы имеем когерентное сложение двух интерферирующих световых пучков с абсолютно одинаковыми волновыми фронтами. Таким образом, проблема сопряжения волновых фронтов в интерферометре на основе голограммы (в том числе динамической) решается автоматически. Это позволяет в частности использовать волны со сколь угодно сложным волновым фронтом как в одном, так и в обоих плечах адаптивного интерферометра без снижения эффективности его работы.

 


Ортогональная геометрия взаимодействия световых волн в фоторефрактивном кристалле

 

Существует несколько схем записи голограмм в фоторефрактивном кресталле: пропускающая, отражательная и ортогональная [11]. Как было показано [12] в широком круге задач наиболее перспективной является ортогональная геометрия.

Схема ортогонального взаимодействия световых пучков в фоторефрактивном кристалле представлена на рис. 2.

 

Рис. 2 Схема ортогонального взаимодействия световых пучков в фоторефрактивном кристалле

 

S – объектная волна, R – опорная. Световые лучи приходят в фоторефрактивный кристалл под прямым углом, где формируют голографическую решетку, которая направлена к ним под углом 45º. Характер взаимодействия световых пучков определяет их взаимная ориентация по отношению к кристаллографическим осям. Эффективность взаимодействия волн в электрооптическом кристалле существенно зависит от ориентации электрического поля в кристалле, среза кристалла и ориентации голографической решетки относительно кристаллографических осей [12].


 

Рис. 3 Ортогональная схема записи голограммы в фоторефрактивном кристалле

 

При ориентации кристалла, как показано на рис. 3 взаимодействуют S-компоненты объектной и опорной волны, P-компоненты ортогональны и не взаимодействуют. Что делает измерительную систему поляризационно независимой. Благодаря этому в качестве объектной волны может использоваться излучение от диффузно-рассевающих объектов или излучение вышедшей из многомодового волоконного световода.

 


Экспериментальная часть

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...