Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Автономные превращения энергии квантовых пульсаторов.




 

Теоретики приписывали статус физической реальности объектам с совершенно фантастическими энергетическими характеристиками. Так, удивительной находкой оказалась идея о физических полях – гравитационном, электромагнитном – с их бесконечными числами степеней свободы, а, значит, и с бесконечным энергосодержанием. Впоследствии физические поля проквантовали – и назвали «физическим вакуумом» состояние полей с минимальной возможной энергией (которая всё равно осталась бесконечной). Ещё больше оживили физическую картину мира «виртуальные частицы», которыми, якобы, бурлит физический вакуум. На этих виртуальных частиц теоретики имеют обыкновение сваливать ответственность за разного рода энергетические парадоксы – ведь виртуальная частица, якобы, способна произвести в локальности как угодно большое отклонение от закона сохранения энергии. Правда, такое отклонение длится, в согласии с принципом неопределённости, исключительно недолго – но теоретикам и этого хватает для решения своих проблем.

В реальном физическом мире подобный произвол с энергиями не имеет места. Мы сознательно устраняем «энергетических паразитов» из понятийного базиса физики и утверждаем, что обладателем всех форм физической энергии является только вещество. Причём, каждая форма физической энергии соответствует конкретной форме движения в веществе. По логике «цифрового» мира, элементарные частицы вещества представляют собой квантовые пульсаторы (1.4). У квантового пульсатора мы усматриваем три основных формы энергии. Главная из них – собственная энергия; соответствующая ей форма движения – это квантовые пульсации. Вторая из них – кинетическая энергия; соответствующая ей форма движения – это, очевидно, перемещение в пространстве. Наконец, третья из них – это энергия связи (если частица входит в состав некоторой структуры); соответствующая форма движения – это циклические перебросы квантовых пульсаций из одной связуемой частицы в другую (4.7). Чтобы выполнялся закон сохранения энергии, для трёх названных форм энергии квантового пульсатора должна быть обеспечена беспроблемная и однозначная превращаемость друг в друга. При этом однозначность кинетической энергии обусловлена тем, что она определяется однозначной, «истинной» скоростью частицы – а именно, её локально-абсолютной скоростью (1.6).

Вот эти обратимые взаимопревращения собственной энергии, кинетической энергии и энергии связи у элементарной частицы вещества мы называем автономными превращениями энергии квантового пульсатора. Заметим, квантовый пульсатор может не иметь кинетической энергии и энергии связи, но собственная энергия у него есть обязательно. Учитывая, что только квантовые пульсаторы являются носителями физических энергий, мы приходим к выводу: «необязательные» формы энергии могут быть у квантового пульсатора лишь при соответственно уменьшенной «обязательной» - т.е., за её счёт. У каждого квантового пульсатора сумма трёх энергий – собственной энергии, кинетической энергии и энергии связи – остаётся постоянной (при постоянном гравитационном потенциале). И всё многообразие физических процессов сводится к тому, что, в результате тех или иных взаимодействий, происходят перераспределения между тремя формами энергии у квантовых пульсаторов – по принципу их автономных превращений.

Так, свободная элементарная частица может иметь кинетическую энергию только за счёт точно такой же убыли своей собственной энергии. Это непривычно, ведь многовековой опыт учит нас: чтобы разогнать тележку, нужно совершить работу и сообщить тележке кинетическую энергию. Этот штамп – «сообщить кинетическую энергию» - прочно вошёл в учебники по физике. Он однозначно подразумевает, что кинетическая энергия может быть сообщена разгоняемому объекту лишь откуда-то извне. Но в микромире, на уровне элементарных частиц, эта логика не работает. Как ни старайтесь, вы не сможете сообщить элементарной частице кинетическую энергию. Вы сможете лишь превратить в её кинетическую энергию часть её собственной энергии. Потому что так работают программные предписания: у элементарной частицы других вариантов приобретения кинетической энергии не предусмотрено.

Получим выражение для кинетической энергии E кин свободного квантового пульсатора – на основе принципа автономного превращения. Принимая, что прирост кинетической энергии обусловлен убылью собственной энергии, имеем:

 

, (4.4.1)

где m 0 - масса свободного покоящегося квантового пульсатора, V - его локально-абсолютная скорость. Из (4.4.1) получаем искомое выражение:

 

. (4.4.2)

Соответственно, собственная энергия E соб свободного квантового пульсатора, как функция его локально-абсолютной скорости, имеет вид:

 

. (4.4.3)

Обращает на себя внимание сходство формул (4.4.2) и (4.4.3), в которых привычные выражения помножены на один и тот же множитель, зависящий от локально-абсолютной скорости. Эти формулы наглядно показывают, что по мере увеличения локально-абсолютной скорости, собственная энергия квантового пульсатора даже не остаётся постоянной – она, частично превращаясь в кинетическую энергию, уменьшается. Причём, в случае V=c кинетическая энергия свободного квантового пульсатора составляет одну треть (а собственная энергия – две трети) от его собственной энергии покоя. Таким образом, из этих формул следует, что, по мере увеличения скорости, собственная энергия (а, значит, и масса) квантового пульсатора не испытывает релятивистского роста. Но не спешите, дорогой читатель, ставить крест на этих формулах. Да, всем нам со школьной скамьи вдалбливали, что релятивистский рост массы (энергии, импульса) – есть, есть, есть! Но это неправда: экспериментальные реалии говорят прямо противоположное (4.5).

А правда в том, что в кинетическую энергию свободного электрона превращается его собственная энергия, и никакая другая. Ортодоксам трудно в это поверить. Они полагают, что в кинетическую энергию электрона превращается энергия ускоряющих его электромагнитных полей. Именно это, якобы, проделывается на ускорителях заряженных частиц. Логика убийственная: электроны ускоряются лишь тогда, когда электромагниты включены – значит, ускоряются-то они на энергиях полей! И, чтобы стать ультрарелятивистскими, ускоряемые электроны должны накрутить многие километры!.. Да мы не оспариваем то, что на ускорителях электроны накручивают километры. Мы лишь напомним, что в природе есть способ гораздо белее эффективного разгона электрона. Вот он: при бета-распаде [Д2] из ядра выстреливается готовый релятивистский электрон. Спрашивается: что это за чудовищные поля генерируются в ядре – которые, к тому же, избирательно действуют лишь на выстреливаемый электрон? А если не поля – то что? Не маленькие же зелёные человечки с кувалдами! «Моментальный» разгон электрона при бета-распаде остаётся тайной для науки. По традиционной логике, здесь кинетическая энергия должна быть откуда-то сообщена электрону. Поэтому полагают, что в его кинетическую энергию превращается часть разности энергий связи исходного и результирующего ядер. Но как это происходит – и происходит ли вообще! – об этом не сообщается.

Принцип автономных превращений энергии позволяет по-новому взглянуть на эту проблему. Но прежде скажем о том, как мы представляем алгоритм пространственного перемещения свободного квантового пульсатора. Если сущностью квантового пульсатора является циклический скачкообразный процесс, то логично предположить, что и перемещаться в пространстве он может лишь скачкообразно. Движение квантового пульсатора с постоянной скоростью означает, что, через некоторое постоянное число собственных циклов, он совершает элементарное скачкообразное перемещение – длина которого, как мы полагаем, равна характерному размеру квантового пульсатора, т.е. его комптоновской длине. Такое элементарное перемещение мы называем квантовым шагом. Частота квантовых шагов Ω равна, как можно видеть, отношению скорости движения к длине квантового шага, т.е. к комптоновской длине λС, которая, с учётом (4.4.3), также зависит от скорости:

 

. (4.4.4)

Как можно видеть из (4.4.4), по мере роста скорости частота квантовых шагов Ω растёт, и при V=c она становится равной собственной частоте пульсатора. Ясно, что частота квантовых шагов не может превышать собственной частоты пульсатора, поэтому не представляется возможным его движение с локально-абсолютной скоростью, превышающей c (что же касается относительных скоростей – например, у пары движущихся друг навстречу другу квантовых пульсаторов – то эти скорости должны подчиняться классическому закону сложения скоростей, т.е., они могут превышать с).

Теперь вернёмся к «моментальному» разгону электрона при бета-распаде. Алгоритм, который осуществляет превращение собственной энергии электрона в кинетическую, работает, по логике вышеизложенного, с дискретом во времени, соответствующим периоду пульсаций электрона. И такое превращение – хоть даже на максимально допустимую величину – может произойти, в принципе, за один цикл работы этого алгоритма. И – полетел он, релятивистский электрон!

Уточним, что, согласно принципу автономных превращений энергии, частица вещества не может ни отдать часть своей энергии вовне, ни получить добавочную энергию извне. Казалось бы, этот подход противоречит опыту – ведь при многих взаимодействиях, как полагают, происходит передача энергии от одного микрообъекта другому. Но при ближайшем рассмотрении оказывается, что во всех этих случаях вполне может происходить не передача энергии, а её согласованные автономные превращения, порождающие иллюзию передачи.

Например, говорят, что, при столкновениях частиц, налетающая частица передаёт покоящейся частице свою кинетическую энергию. В рамках же нашего подхода, при таком столкновении полные энергии каждой из частиц не изменяются, а происходят равные по величине и противоположные по направлению перераспределения между собственной и кинетической энергиями у каждой из этих частиц.

Аналогично, при ударном возбуждении атома ударяющий электрон отнюдь не отдаёт атому свою кинетическую энергию, которая превращается в энергию возбуждения атома. При этом, как мы полагаем, у ударяющего электрона уменьшается кинетическая энергия и, соответственно, увеличивается собственная, а у атома – уменьшается энергия связи и, соответственно, тоже увеличивается собственная. Если происходит ударная ионизация, то сначала энергия связи обнуляется, с соответствующим восстановлением собственных энергий, а затем освобождённый электрон ещё и может быть приведён в движение – с превращением части его собственной энергии в кинетическую. Сходным образом, дело обходится без передачи энергии от атома к атому, когда при их соударении происходит столкновительный перенос возбуждения.

Наконец, при квантовом перебросе световой энергии с атома на атом происходят, как мы полагаем, всего лишь скоррелированные перераспределения энергии у этой пары атомов (3.10).

Подчеркнём, что автономные превращения энергии происходят со стопроцентным коэффициентом полезного действия, совершенно без потерь энергии. Так, при ускорении элементарной частицы вещества гравитационным или электромагнитным воздействием, не происходит диссипации энергии. Напротив, если говорить про двигатели, в которых сжигается топливо, то они производят почти стопроцентную диссипацию, которая сопровождается жалким побочным продуктом – автономным приростом кинетической энергии у частиц приводимого в движение аппарата. Насколько возросли бы возможности техники, если бы в ней использовался прямой доступ к алгоритмам, управляющим автономными превращениями энергии!

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...