Частота вращения ротора асинхронного двигателя
Стр 1 из 2Следующая ⇒ МДС трехфазной обмотки
При включении трехфазной обмотки статора в сеть трехфазного тока в обмотках фаз появятся токи, сдвинутые по фазе (во времени) относительно друг друга на 120 эл. град IА = IAmax sin ωt; iB = IBmax sm (ωt -120°); iC = ICmax sin(ωt - 240°).
Ток каждой обмотки создает пульсирующую МДС, а совокупное действие этих МДС создает результирующую МДС, вектор которой вращается относительно статора. Для определения амплитуды основной гармоники МДС трехфазной обмотки необходимо сложитъ основные гармоники МДС обмоток фаз, оси которых смещены в пространстве относительно друг друга на 120 эл. град: fA = Fф1 sin ω1t cos α = 0,5 Fф1 [sin (ω1t – α) + sin(ω1t + α)]; fB = Fф1 sin(ω1t – 120 )cos(α – 120 ) = 0,5 Fф1[sin (ω1t – α) + sin(ω1t + α – 120 )]; fC = Fф1 sin(ω1t– 240 )cos(α – 240 ) = 0,5 Fф1[sin (ω1t – α) + sin(ω1t + α – 120 )]. Следовательно, МДС трехфазной обмотки f1 = fA + fB + fC =1,5 Fф1 sin(ω1t - α) = F1 sin(ω1t - α), амплитуда МДС трехфазной обмотки на один полюс при симметричиой нагрузке фаз равна 1,5 амплитуды МДС обмотки фазы. Способы пуска синхронных двигателей
Пуск синхронного двигателя непосредственным включением в сеть невозможен, так как ротор из-за своей значительной инерции не может быть сразу увлечен вращающимся полем статора, частота вращения которого устанавливается мгновенно. В результате устойчивая магнитная связь между статором и ротором не возникает. В настоящее время практическое применение имеет асинхронный пуск. Этот способ пуска возможен при наличии в полюсных наконечниках ротора пусковой обмотки (клетки), аналогичной успокоительной обмотке синхронного генератора. Невозбужденный синхронный двигатель включают в сеть. Возникшее при этом вращающееся магнитное поле статора наводит в стержнях пусковой клетки ЭДС, которые создают токи .
Взаимодействие этих токов с полем статора вызывает появление на стержнях пусковой клетки электромагнитных сил . Под действием этих сил ротор приводится во вращение После разгона ротора до частоты вращения, близкой к синхронной , обмотку возбуждения подключают к источнику постоянного тока. Образующийся при этом синхронный момент втягиваем ротор двигателя в синхронизм. После этого пусковая обмотка двигателя выполняет функцию успокоительной обмотки, ограничивая качания ротора. Чем меньше нагрузка на валу двигателя, тем легче его вхождение в синхронизм. Явнополюсные двигатели малой мощности, пускаемые без нагрузки на валу, иногда входят в синхронизм лишь за счет реактивного момента, т. е. даже без включения обмотки возбуждения. При асинхронном пуске синхронного двигателя возникает значительный пусковой ток. Поэтому пуск синхронных двигателей непосредственным включением в сеть на номинальное напряжение применяют при достаточной мощности сети, способной выдерживать без заметного падения напряжения броски пускового тока пяти- или семикратного значения (по сравнению с номинальным током). Если же мощность сети недостаточна, то можно применить пуск двигателя при пониженном напряжении (см. § 15.2): автотрансформаторный или реакторный.
Регулирование частоты вращения асинхронного двигателя Частота вращения ротора асинхронного двигателя n2 =n1(1 - s) = (f160/ p)(l - s).
Регулирование частоты вращения изменением подводимого напряжения. Возможность этого способа регулирования подтверждается графиками М = f (s), построенными для разных значений U1. При неизменной нагрузке на валу двигателя увеличение подводимого к двигателю напряжения вызывает рост частоты вращения. Однако диапазон регулирования частоты вращения получается небольшим, что объясняется узкой зоной устойчивой работы двигателя, ограниченным значением критического скольжения и недопустимостью значительного превышения номинального значения напряжения.
Подводимое к двигателю напряжение изменяют либо регулировочным автотрансформатором, либо реакторами, включаемыми в разрыв линейных проводов. Узкий диапазон регулирования и неэкономичность (необходимость в дополнительных устройствах) ограничивают область применения этого способа регулирования частоты вращения.
Регулирование частоты вращения изменением частоты тока в статоре.
Для осуществления этого способа регулирования необходим источник питания двигателя переменным током с регулируемой частотой (преобразователи частоты). Чтобы регулировать частоту вращения, достаточно изменить частоту тока f 1. Но с изменением частоты f 1 = ω1p/ (2π) будет изменяться и максимальный момент. Поэтому для сохранения неизменными перегрузочной способности, коэффициента мощности и КПД двигателя на требуемом уровне необходимо одновременно с изменением частоты f 1 изменять и напряжение питания U1. Частотное регулирование двигателей позволяет плавно изменять частоту вращения в широком диапазоне (до 12:1). Однако источники питания с регулируемой частотой тока удорожают установку.
Регулирование частоты вращения изменением числа полюсов обмотки статора. Этот способ регулирования частоты вращения дает ступенчатую регулировку (см. формулу). Изменять число полюсов в обмотке статора можно либо укладкой на статоре двух обмоток с разным числом полюсов, либо укладкой на статоре одной обмотки, конструкция которой позволяет путем переключения катушечных групп получать различное число полюсов. Последний способ получил наибольшее применение. Принцип преобразования четырехполюсной обмотки в двухполюсную (для одной фазы) показан на рис. 15.12: при последовательном согласном соединении двух катушек возбуждаемое ими магнитное поле образует четыре полюса (рис. 15.12, а); при последовательном встречном (рис. 15.12, б) или параллельном соединениях (рис. 15.12, в) — два полюса. Таким образом, принцип образования полюсно переключаемой обмотки основан на том, что каждая фаза обмотки делится на части (катушечные группы), изменяя схему соединения которых получают разное число полюсов.
Если на статоре расположить две полюсно переключаемые обмотки, то получим четырехскоростной двигатель. Однако возможно применение и одной обмотки, допускающей путем переключения катушечных групп получение до четырех вариантов различных чисел полюсов. Регулирование частоты вращения изменением числа полюсов на статоре применяют исключительно в асинхронных двигателях с короткозамкнутым ротором, так как число полюсов в обмотке этого ротора всегда равно числу полюсов статора и для изменения частоты вращения достаточно изменить число полюсов в обмотке ротора. В случае же фазного ротора пришлось бы и на роторе применить полюсно переключаемую обмотку, что привело бы к недопустимому усложнению двигателя.
Регулирование частоты вращения изменением активного сопротивления в цепи ротора. Этот способ регулирования частоты вращения возможен лишь в двигателях с фазным ротором. С увеличением активного сопротивления ротора возрастает скольжение, соответствующее заданному нагрузочному моменту. Частота вращения двигателя при этом уменьшается. Практически изменение активного сопротивления цепи ротора достигается включением в цепь ротора регулировочного реостата (РР), подобного пусковому реостату (ПР) (см. рис. 15.2), но рассчитанного на длительный режим работы. Уменьшение частоты вращения (увеличение скольжения) сопровождается ростом электрических потерь в цепи ротора и снижением КПД двигателя. Так, если при неизменном нагрузочном моменте на валу двигателя увеличить скольжение от 0,02 до 0,5, что соответствует уменьшению частоты вращения примерно вдвое, то потери в цепи ротора составят почти половину электромагнитной мощности двигателя. Это свидетельствует о неэкономичности рассматриваемого способа регулирования. К тому же необходимо иметь в виду, что рост потерь в роторе сопровождается ухудшением условий вентиляции из-за снижения частоты вращения, что приводит к перегреву двигателя.
Рассматриваемый способ регулирования имеет еще и тот недостаток, что участок механической характеристики, соответствующий устойчивой работе двигателя, при введении в цепь ротора добавочного сопротивления становится более пологим и колебания нагрузочного момента на валу двигателя сопровождаются значительными изменениями частоты вращения ротора. Но несмотря на указанные недостатки, рассмотренный способ регулирования частоты вращения широко применяется в асинхронных двигателях с фазным ротором. Способ обеспечивает регулирование частоты вращения в широком диапазоне, но только вниз от синхронной частоты вращения. Вместе с тем он обеспечивает двигателю улучшенные пусковые свойства.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|