Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Многокомпонентные жидкости




В природе химически чистых жидкостей нет, технических рафинированных тоже немного. Обычно в основной жидкости всегда имеются незначительные или весьма суще­ственные добавки (примеси). Для капельной жидкости примесями могут быть другие жидкости, газы и твёрдые тела. В таких случаях жидкость с примесями может образовать гомогенную или гетерогенную смесь.

Гомогенные смеси образуются в тех случаях, когда в основной жидкости (в таких случаях эта жидкость называется растворителем) примеси распределяются по всему объё­му растворяющей жидкости равномерно на уровне молекул. В таких случаях смесь физи­чески представляет собой однородную среду, называемую раствором. Сами же примеси носят название компонент. Физические свойства такой гомогенной смеси (плотность и удельный вес) можно определить по компонентному составу:

где:- плотность смеси,

- плотность i - той компоненты, количество / - той компоненты.

Величины других параметров смеси (вязкость и др.) зависят от многих физико-химических факторов, что является самостоятельным объектом изучения.

В тех случаях, когда примеси в основной жидкости находятся не на молекулярном уровне, а в виде частиц, представляющих собой многочисленные ассоциации молекул ве­щества примеси, то такие смеси не могут считаться однородными растворами. Физиче­ские свойства таких смесей (включая плотность и удельный вес) будут зависеть от того, какое вещество будет находиться в точке измерения. Такие смеси будут неоднородными (гетерогенными) смесями. В литературе такие смеси часто называют многофазными жид­костями. Отличительной особенностью многофазных жидкостей является наличие в них внутренних границ раздела между фазами, вдоль этих поверхностей раздела действуют силы поверхностного натяжения, которые могут оказаться значительными при большой площади поверхности границ между фазами. Силы поверхностного натяжения вкупе с

другими силами, действующими в многофазной жидкости, увеличивают силы сопротив­ления движению жидкости.

Примеров многофазных жидкостей в природе достаточно: эмульсии - смеси двух и более нерастворимых друг в друге жидкостей; газированные жидкости - смеси жидкости со свободным газом, окклюзии - смеси жидких и газообразных углеводородов; суспензии и пульпы - смеси жидкостей и твёрдых частиц, находящихся в жидкости во взвешенном состоянии и т.д.

Неньютоновские жидкости

Многокомпонентные жидкости как гомогенные, так и гетерогенные, в большей сте­пени, могут содержать в своём составе компоненты, значительно изменяющие вязкость жидкости, и даже кардинально меняющие саму физическую основу и природу внутренне­го трения. В таких жидкостях гипотеза вязкостного трения Ньютона (пропорциональность напряжений градиенту скорости относительного движения жидкости) неприменима. Со­ответственно такие жидкости принято называть неньютоновскими жидкостями.

Среди неньютоновских жидкостей принято выделять вязкопластичные жидкости, псевдопластичные жидкости и дилатантные жидкости. Для вязкопластичных жидкостей характерной особенностью является то, что они до достижения некоторого критического внутреннего напряжения т0 ведут себя как твёрдые тела и лишь при превышении внут­реннего напряжения выше критической величины начинают двигаться как обычные жид­кости. Причиной такого явления является то, что вязкопластичные жидкости имеют про­странственную жёсткую внутреннюю структуру, сопротивляющуюся любым внутренним напряжениям меньшим критической величины, это критическое напряжение в литературе называют статическим напряжением сдвига. Для вязкопластичных жидкостей справедли­вы следующие соотношения Бингама:

Для псевдопластичных жидкостей зависимость между внутренним напряжением сдвига и градиентом скорости относительного движения слоев жидкости в логарифмиче­ских координатах оказывается на некотором участке линейной. Угловой коэффициент со­ответствующей прямой линии заключён между 0 и 1 Поэтому зависимость между напря­жением и градиентом скорости можно записать в следующем виде:

где: k - мера консистенции жидкости,

п - показатель, характеризующий отличие свойств псевдопластичной жидкости от ньютоновской.

Для псевдопластичных жидкостей полезно ввести понятие кажущейся вязкости жид­кости

тогда: , т.е. величина кажущейся вязкости псевдопластичной жидко-

сти убывает с возрастанием градиента скорости.

Дилатантные жидкости описываются тем же самым уравнением, что и псевдопла­стичные жидкости, но при показателе п > 1.У таких жидкостей кажущаяся вязкость уве­личивается при возрастании градиента скорости. Такая модель жидкости может быть применена при описании движения суспензий.

Неньютоновские жидкости обладают ещё одним свойством, их вязкость существен­ным образом зависит от времени. По этой причине (например, для вязкопластичных жид­костей) величина статического напряжения сдвига зависит от предыстории: чем более длительное время жидкость находилась в состоянии покоя, тем выше величина неё стати­ческого напряжения сдвига. Если прервать движение такой жидкости (остановить её), то для начала движения такой жидкости потребуется развить в жидкости меньшее напряже­ние, чем и том случае, когда она находилась в покое длительное время. Следовательно, необходимо различать величину начального статического напряжения сдвига и динамиче­скую величину этого показателя. Жидкости, которые обладают такими свойствами, назы­ваются тиксотропными. Жидкости, у которых наоборот динамические характеристики выше, чем начальные называются реопектическими неньютоновскими жидкостями. Такие явления объясняются тем, что внутренняя структура таких жидкостей способна упроч­няться с течением времени, или (в другом случае) для восстановления начальных свойств им требуется некоторое время.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...