Динамика идеальной жидкости
4.1. Дифференциальное уравнение движения идеальной жидкости (при установившемся движении) и его интегрирование Для вывода уравнения движения жидкости обратимся к записанному ранее уравнению равновесия жидкости (в проекциях на координатные оси), иначе говоря: . Поскольку в идеальной жидкости никаких сосредоточенных сил действовать не может, то последнее уравнение чисто условное. Когда равнодействующая отлична от 0, то жидкость начнёт двигаться с некоторой скоростью, т.е. в соответствии со вторым законом Ньютона, частицы жидкости, составляющие жидкое тело получат ускорение. Тогда уравнение движения жидкости в проекциях на координатные оси можно записать в следующем виде: Согласно основному положению о поле скоростей (метод Эйлера) для проекций скоростей движения жидкости можно записать следующее: или (для установившегося движения жидкости): Найдём первые производные от скоростей по времени, т.е. определим ускорения вдоль осей координат: отметим, что: ' * / Теперь подставив выражения для ускорений в исходную систему дифференциальных уравнений движения жидкости, получим систему уравнений Эйлера в окончательном ви-де2: Теперь вновь обратимся к системе дифференциальных уравнений движения жидкости, умножив обе части 1-го уравнения на dx, 2-го уравнения на dy, 3-го уравнения на dz, получим: и просуммировав эти уравнения по частям, получим: 2 При неустановившемся движении жидкости уравнения Эйлера дополняются первыми слагаемыми. Преобразуем левую часть полученного уравнения, полагая, что в результате запишем Слагаемые в правой части уравнения являются полными дифференциалами функций.
Теперь уравнение примет вид Если из массовых сил на жидкость действует только сила тяжести, то , и >,* тогда получим: После интегрирования получим: ? разделив почленно все члены уравнения на g, получим так называемое уравнение Бернулли Здесь величина Н называется гидродинамическим напором Величина гидродинамического напора постоянна для всех живых сечений элементарной струйки идеальной жидкости. Уравнение Бернулли для элементарной струйки идеальной жидкости Выделим двумя нормальными к линиям тока сечениями 1 - 1 и 2 - 2 отсек жидкости, который будет находиться под действием сил давления и сил тяжести dG Под действием этих сил через малый промежуток времени отсек жидкости из своего первоначального положения переместится в положение между __сечениями Силы давления, приложен ные к живым сечениям отсека с правой и с левой сто- рон имеют противоположные друг другу направления. Перемещение всего отсека жидкости можно заменить перемещением массы жидкости между сечениями: 1-1иГ-Г в положение 2-2и2'-2', при этом центральная часть отсека жидкости (можно утверждать) своего первоначального положения не меняет и в движении жидкости участия не принимает. Тогда работа сил давления по перемещению жидкости можно определить следующим образом: Работа сил тяжести будет равна работе по перемещению веса отсека жидкости на разницу уровней При перемещении отсека жидкости кинетическая энергия изменится на величину: f Теперь запишем общее уравнение баланса энергии: Разделив все элементы уравнения на dG и, переместив в левую часть уравнения величины с индексами «1» а в правую - с индексом «2», получим: Это последнее уравнения носит название уравнения Бернулли для элементарной струйки идеальной жидкости.
Воспользуйтесь поиском по сайту: ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|