Внутрицилиндровая обработка
6. Использование, по возможности, тех же методов, что и в доцилиндровой обработке (п.п 1-5). 7. Настройка двигателя: - по топливу (если оно необходимо): переобеднение смеси; - по углу зажигания; - по положению работы заслонок; - наработка изотопов – катализаторов. Усиления магнитной индукции можно достичь статическим и динамическим способами. При статическом способе магнитную индукцию увеличивают добавками редкоземельных металлов (РЗМ). Ограничением является их избыточная концентрация, при которой происходит их возгорание на воздухе. Отмечается /22/, что в Японии создали постоянный магнит с индукцией 15 Тл. Надо сказать, что индукция даже в Токамаках не превосходит 6 Тл, так что вряд ли эта информация достоверна. Однако, импульсными методами /23/ можно создать магнитную индукцию 2500 Тл. Там же указано, что в постоянных магнитах с заостренными полюсами, можно достичь увеличения магнитной индукции в 2,5 и более раз (с.20). Это объясняется тем, что по аналогии с электрическим разрядом на электродах, на северном полюсе магнита тоже может накапливаться заряд (электрино), особенно, если полюс – остроконечный, выше индукции насыщения. Затем идет разряд от большей концентрации к меньшей. Шероховатость в виде микроостриев и магнитные порошки (порошинки играют роль остриев) с размерами 1-10 мкм тоже могут служить концентраторами магнитного потока и усиления индукции. Пленочные магниты с РЗМ могут не только усилить индукцию, но и позволят сократить расход материала. При динамическом способе усиление индукции достигается импульсным магнитным потоком во вращающихся или электромагнитных системах при увеличении частоты вплоть до резонансной.
Использование катализаторов Усиление катализаторов в магнитном или электрическом поле происходит следующим образом. Основным разгонным органом снарядов – электрино является их вихрь, вращающийся вокруг атомов кристаллической решетки. Скорости электрино достигают в нем значения 1025 м/с. Это очень большая скорость, так как уже скорости 1019 степени достаточно для разрушения атомов, например, золота, на отдельные нейтроны /7/. Но эта скорость в межатомном пространстве катализатора очень быстро убывает, а реагенты в этом межатомном пространстве попадают, конечно, не вплотную к атомам, а вероятнее в середину пространства ввиду равнодействия и равноудаленности от атомов решетки, где скорость ниже указанных. Вихри частично компенсируют избыточный отрицательный заряд металла, и очень незначительно: на 1-5%. Поэтому есть еще возможность увеличить вихрь в 20-100 раз в пределе до полной компенсации заряда, а фактически, конечно, меньше. Это подтверждается, например, использованием губчатого тантала с развитой поверхностью для изготовления электрических конденсаторов, которые заряжаются как раз по указанному принципу компенсации избыточного заряда. В магнитном и электрическом поле будет не только увеличиваться вихрь электрино, но и молекулы воздуха, имеющие существенно меньше размеры, чем атомы катализатора, и, тем более, размера межатомного пространства, свободно проникающие туда в приповерхностном слое атомов катализатора, будут магнитным и электрическим потоками прижиматься ближе к атомам в зоны вихрей с высокими скоростями электрино. Тем самым нейтрализация и разрушение межатомных связей в молекулах кислорода и азота будет полнее. Усилить каталитическое действие можно импульсным изменением напряженности магнитного и электрического поля. Тогда уже вступают в действие ударные высокоскоростные эфирные волны электринных потоков с высокими же параметрами (давление, температура, концентрация) на фронте волны, активизирующими молекулы воздуха, и разрежением за фронтом волны, их разрушающим после активизации. Предельным состоянием может быть резонанс вынужденной частоты с собственной частотой колебания атомов кристаллической решетки. Можно усилить катализ еще многократной циркуляцией воздуха через оптимизатор или многократным действием каскада оптимизаторов. Поверхность катализатора, как видно, должна быть развитой, а степень нейтрализации межатомной связи в кислороде и азоте не должна достигать ее полного разрушения, вызывающего горение воздуха (ФПВР), так как катализатор в пламени окисляется атомарным кислородом и выходит из строя. Например, тантал окисляется до Та2О5.
Адаптация зажигания Теперь о зажигании. Выше уже поясняли причину, почему молния не может взорвать атмосферу. Так и искра электрического заряда не может самостоятельно взорвать чистый воздух в цилиндре двигателя. С топливом – это можно сделать. При этом желательно нейтрализовать свободные электроны, поставляемые топливом в плазму горения. Ориентировочные расчеты показывают, что, например, для автомобиля ВАЗ-2106 мощность искры должна быть по этой причине не менее 1 Дж. Поэтому следует применять усиленные свечи зажигания, например, Е.С. Бугайца (с конденсаторами, со специальной формой электродов), И.Н. Стаценко (плазменно-форкамерные свечи со сверхзвуковым пламенем). Они дают более мощную искру с высокоскоростной и высокочастотной плазмой, увеличивают каталитический эффект. Пламя быстрее, чем обычно, охватывает весь объем камеры сгорания цилиндра двс, возникает вращение пламени в цилиндре, соответственно, с разрежением на оси вращения как в середине цилиндра, так и на оси вращения «баранки» вихря. Это тоже способствует разрушению молекул воздуха и бестопливному горению как и сверхзвуковая плазма. При этом вследствие кориолисовых сил и наличия энергии в плазменном вихре, этот вихрь может быть длительно устойчивым. Этому может способствовать также форма поршня. Зажигание может быть не только однократным, как обычно, но и многократным, и частотным. На основе индикаторной диаграммы можно будет уточнить углы зажигания в разных точках хода поршня (см. также /1, 2, 3/).
Повышение оборотов Практика показывает, что повышение оборотов способствует наступлению азотного цикла, не совсем бестопливного, но уже с участием не только кислорода, но и азота в горении. Внешними визуальными признаками этого режима являются следующие: - много воды в виде пара на выхлопе; - отсутствует запах выхлопных газов; - низкая 50-600С температура выхлопной трубы, так что за нее можно держаться голой рукой; - мягкая бесшумная работа двигателя; - снижение температуры охлаждающей двигатель жидкости на 10-150С; - с помощью индикатора качества смеси (ИКС) видно искру на черном фоне беспламенного «холодного» горения; - ручка переключения скорости становится неподвижной, не дрожит, как обычно. Это все свидетельствует о пониженном давлении и температуре в цилиндрах двигателя. При этом его мощность не только не снижается, но и возрастает, что является следствием усиленной диссоциации воздуха, вплоть до нуклонов, как указывалось выше на примере золота /7/. Вот откуда еще один источник единичных элементарных атомов, то есть атомов водорода, для образования воды в большом количестве, визуально и инструментально определяемом на выходе из выхлопной трубы. Если построить примерную индикаторную диаграмму работы двигателя в азотном частично автотермическом режиме с учетом большого опережения угла зажигания (начала горения), диссоциации и плавного нарастания и снижения (меньшего по максимуму) давления, обратной продувки цилиндров повышенным более атмосферного давлением выхлопа с отжиманием и отсеканием топлива в карбюраторе от отверстий его подачи в первичной и вторичной камерах, то такая уточненная эпюра совмещенных в двигателе давлений 4-х цилиндров (для ВАЗ-2106) показывает, что огибающая кривая давлений – почти постоянная. Вот почему не дрожит ручка переключателя скорости, а работа двигателя бесшумна, по сравнению с обычным двигателем, для которого индикаторная диаграмма имеет достаточно острый пик, совокупность которых и дает дрожание конструкции и ручки.
13.2.6. Устранение несанкционированного Одним из недостатков карбюраторного способа подачи топлива является несанкционированный подсос его из бака. От бака до цилиндров канал открыт практически беспрепятственно для прохода топлива. Много каналов и отверстий подсоса, практически неучтенных, когда, особенно, на переменных режимах, топливо скачком увеличивает расход за счет резкого изменения давления и разрежения, что видно оперативно по установленному датчику расхода топлива. Кроме того, топливо уходит под иглу поплавкового клапана даже тогда, когда двигатель не работает, после его остановки. Замер мензуркой показывает, что в этом случае расход топлива составляет 0,1-0,2 л/ч. При работающем двигателе топливо уходит под иглу значительно больше вследствие вибрации иглы и открытия канала. Игла работает как поршень, подкачивая топливо в камеру. Камера переполняется и топливо следует в цилиндры. Контролируемый и регулируемый уровень топлива в камере карбюратора с помощью электроклапана отчасти решает эту проблему. Для азотного режима уровень топлива должен быть как можно меньше, тогда лучше обеспечивается переобедненная смесь. Исключение топлива безусловно решит рассмотренную проблему.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|