Ответы. Узелок I. Задача. Решение. Узелок II. Задача 1. Званый обед у губернатора. Узелок I . Задача 2. Комнаты с удобствами.
Ответы
— Узелок, — сказала Алиса. — Позвольте, я помогу вам развязать его!
Узелок I
Задача.
Два путешественника выходят из гостиницы в 3 часа дня и возвращаются в нее в 9 часов вечера. Маршрут их проходит то по ровному месту, то в гору, то под гору. По ровному месту путешественники идут со скоростью 4 мили в час, в гору — со скоростью 3 мили в час и под гору — со скоростью 6 миль в час. Найти расстояние, пройденное путешественниками с момента выхода из гостиницы до момента возвращения, а также (с точностью до получаса момент восхождения на вершину горы.
Ответ.
24 мили; 6 часов 30 минут вечера.
Решение.
Одну милю пути по ровной местности путешественники проходят за 1/4 часа. Поднимаясь в гору, они преодолевают одну милю за 1/3 часа, а спускаясь с горы, — за 1/6 часа. Следовательно, на то, чтобы пройти туда и обратно одну милю, независимо от того, пролегает ли их путь по долине или по склону горы, у наших путешественников всегда уходит 1/2 часа. Таким образом, за 6 часов (с 3 до 9) они прошли 12 миль в одну сторону и 12 миль — в другую. Если бы 12 миль почти целиком проходили по местности без подъемов и спусков, то у наших путешественников на преодоление их ушло бы немногим больше 3 часов. Если бы путь в 12 миль почти все время шел в гору, на него ушло бы немногим меньше 4 часов. Следовательно, 3 1/2 часа — это время, которое не больше чем на 1/2 часа отличается от времени, прошедшего с момента выхода из гостиницы до подъема на вершину. Поскольку путешественники вышли из гостиницы в 3 часа дня, они достигли вершины горы в 6 часов 30 минут (время дано с точностью до получаса).
Я получил много ответов на эту задачу, среди них особенно любопытны одно дополнение и одно решение в стихах. В присланном дополнении я изменил одно или два слова. Надеюсь, автор его не будет за это в обиде, поскольку в исправленных местах он допустил некоторые неточности.
— Постой, постой! — сказал молодой рыцарь, и слабый отблеск вдохновенья озарил черты его лица, с которого начало исчезать выражение глубокого отчаяния. — Когда мы взошли на вершину горы и тем самым достойно увенчали тяготы нашего пути, как мне кажется, роли не играет. В самом деле, за то время, пока мы взбираемся на одну милю по склону горы и проходим ее на обратном пути, мы по ровному месту могли бы пройти вдвое больше. Отсюда неопровержимо следует, что за битых 6 часов, которые мы находимся в пути, нигде не останавливаясь, чтобы перевести дух или полюбоваться природой, будет пройдено 24 мили. — Великолепно! — воскликнул пожилой рыцарь. — Двенадцать миль туда и двенадцать миль обратно. На вершину горы мы взобрались где-то между 6 и 7 часами. А теперь послушай, что говорят старшие! Сколько раз по 5 минут прошло с 6 часов до того момента, когда мы достигли вершины горы, столько миль мы взбирались по ее мрачному склону! Молодой рыцарь застонал и со всех ног бросился бежать в гостиницу.
Читательницы, скрывшиеся за псевдонимами Простушка Сюзанна и Добрая примета, изложили ход своих рассуждений в следующих стихах.
Лишь три пробило на часах, Пустились в путь тернистый Те, кто не ведал слова «страх», — Два рыцаря-туриста. Один был молод и силен, Другой был стар и сед. Один был прям, другой — согбен Под грузом лат и лет. Сначала по равнине шли, Шагая в ногу дружно, Но сколько миль они прошли — Об этом знать не нужно. Известна лишь скорость, С которой брели Они по равнинной Дороге в пыли: Хоть миля длинна, Каждый час проходили
Герои-туристы По дважды две мили. Но то по равнине. По склонам же горным Туристы взбирались Не столь уж проворно, Но все же неплохо: Три мили за час Они проходили в горах Всякий раз. И вдвое быстрее Спускались с горы, Желая успеть До вечерней зари. В три вышли, А в девять вернулись назад, Преодолев Сто препон и преград. Длину маршрута даже дети Сумеют вычислить, заметив, Что милю любую всего в полчаса Туристы успеют пройти до конца, Затем повернуть и дойти до начала. Хоть сказано этим, казалось бы, мало, Но можно задачу решенной считать И наш узелок до конца развязать.
Узелок II
Задача 1. Званый обед у губернатора.
Губернатор Кговджни дает званный обед в узком кругу и приглашает шурина своего отца, тестя своего брата, брата своего тестя и отца своего шурина. Найти число гостей на этом обеде.
Ответ.
Один гость.
Решение На этом генеалогическом древе мужчины обозначены заглавными, а женщины — строчными буквами. Губернатор обозначен буквой Е, а его гость — буквой C.
Задача 2. Комнаты с удобствами.
В каждой стороне квадрата находится по 20 дверей, делящих ее на 21 равную часть. Все двери перенумерованы по кругу, начиная с некоторой вершины квадрата. Какая из четырех дверей — № 9, 25, 52 или 73 — обладает тем свойством, что сумма расстояний от нее до трех остальных дверей наименьшая?
Ответ.
Дверь № 9.
Решение
Обозначим девятую дверь через А, двадцать пятую — через В, пятьдесят вторую — через C и семьдесят третью — через D.
Тогда
(12…. означает «между 12 и 13»);
Таким образом, сумма расстояний до трех других дверей для А заключена между 46 и 47, для В — между 54 и 55, для С — между 56 и 57 и для D — между 48 и 51. (Почему не «между 48 и 49»? Постарайтесь разобраться сами. ) Следовательно, сумма расстояний минимальна для двери А. В задаче 2 я молчаливо предполагал, что нумерация домов начинается с одной из вершин квадрата. Подавляющее большинство читателей в своих решениях исходили из того же предположения. Однако один из читателей в своем письме сообщает иное: «Если предположить, что в середине каждой из сторон квадрата на площадь выходит некая улица (такое предположение не противоречит условиям задачи! ), то вполне допустимо, что нумерация домов на площади начинается где-то на улицах и лишь продолжается на площади». Возможно, бывает и так, но не естественнее ли встать на точку зрения, разделяемую автором и большинством читателей?
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|