Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Глава 3. Как учёные ищут язык в мозге




Глава 3. Как учёные ищут язык в мозге

Post mortem, или посмертное вскрытие – это единственный способ исследовать мозг человека, который был доступен учёным до XX века. Если к врачу обращался пациент с ярко выраженными проблемами, он за ним наблюдал, тщательно описывал отклонения, а после смерти на вскрытии находил повреждённые участки мозга. Именно так Брока и Вернике нашли речевые центры.

Учёные могли найти, где в мозге что-то происходит, но как – это оставалось тайной за семью печатями. XX век, особенно его вторая половина, предоставил исследователям мозга новые возможности. Появились новые сложные приборы, которые помогают заглянуть в живой мозг. Однако с языком возникли неожиданные проблемы. Проводить многие эксперименты на людях запрещено из этических соображений. А животные не говорят, поэтому эксперименты не помогут понять язык. Поэтому набор методов нейроучёных достаточно ограничен.

Работа хитроумных приборов, заглядывающих в мозг, основана на главных особенностях мозга – электрической активности нейронов и потреблении ими энергии.

Как быстро работает мозг

Нейроны обмениваются друг с другом информацией, зашифрованной в электрических импульсах. Сигналы отдельных нейронов слишком слабы, чтобы их можно было уловить прибором и измерить. Но во время исполнения определённой задачи загораются целые нейронные ансамбли. А вот их электрический сигнал имеет достаточную силу, чтобы его поймать. Ансамбли загораются и потухают с фантастической скоростью – за доли тысячные доли секунды.

Учёные разработали два аппарата, улавливающих электрическую активность мозга. Это электроэнцефалограф и магнитоэнцефалограф. Работы по регистрации токов мозга учёные начали ещё в конце XIX века. Первую энцефалограмму собаки записали в 1913 году, а ЭЭГ человека – в 1924. Активно использовать этот метод учёные стали спустя 10 лет.

Электроэнцефалограф измеряет электрическое поле. Для этого на голове закрепляется множество электродов, которые кабелями соединены с усилителем сигнала. Расстояние от электрода до поверхности мозга – 2 сантиметра. Результат энцефалограммы – это зигзаги или волны, изображающие процессы в мозге. В зависимости от разных состояний – бодрствует человек или спит, болен, что он делает – мозг производит волны разной частоты. Известны альфа-, бета-, гамма-, дельта- и тета-волны.

Их преимущество и в том, что они улавливают процессы, происходящие в доли секунды. Их слабость – точное место этих процессов. Они определяют только примерный регион.

Магнитоэнцефалография измеряет магнитное поле, которое образуется во время активности нейронов. Высокочувствительные катушки улавливают его малейшие изменения над головой человека. При таком исследовании человек сидит в кресле, над его головой висит труба – как суперфен в салоне красоты. В ней установлено от 100 до 300 катушек, но с головой человека они не соприкасаются.

Оба метода улавливают процессы, происходящие в доли секунды, и безопасны для пациентов. МЭГ даже используют для обследования ещё не рождённых детей. Кроме того, МЭГ более удобен для пациентов, так как им не нужно надевать специальную шапочку или закреплять электроды. Аппарат для МЭГ более чувствительный и более дорогой, чем электроэнцефалограф. Но для него необходим отдельный кабинет, в который не проникают электромагнитные волны извне. Слабость ЭЭГ и МЭГ – точное место происходящих в мозге процессов.

В мозге одновременно происходит много процессов. Как же распознать волну, связанную с языком? Для этого исследователи дают людям задания и при этом измеряют активность его нейронов. Этот метод получил название метод вызванных потенциалов. Разные потенциалы выглядят на графике по-разному. Они отличаются по скорости, по их местонахождению на графике, по месту возникновения в мозге. На языковые задания мозг реагирует пятью разными всплесками – N100, ELAN, LAN, N400, P600. Подробнее о них – в следующей главе.

Вызванные потенциалы помогают понять, как и когда мозг реагирует на грамматические ошибки, неподходящие слова, неправильный порядок слов. Их используют, чтобы узнать, как дети и взрослые обрабатывают речь, одинаково ли мозг справляется с родным и иностранным языками.

Как найти место языка в мозге

Мозг – самый дорогой орган тела человека. Он съедает 20 % всего кислорода, который поступает в организм. Кислород нужен мозгу, чтобы сжигать топливо для своей работы. Это топливо – глюкоза. Из окисления глюкозы образуется нужная для работы нейронов энергия.

Та зона мозга, которая больше всего работает, забирает больше всего глюкозы и кислорода, которые туда приносит кровь. Поэтому, измерив кровоток, учёные могут узнать, какая же зона мозга сейчас трудится.

Одним из первых таких приборов был позитронно-эмиссионный томограф (ПЭТ). Чтобы узнать, где в мозге самый большой расход глюкозы, когда человек выполняет задание, ему делают инъекцию с глюкозой, помеченной радиоактивным атомом. Мозг направляет её в активное место. Радиоактивный атом распадается на нейтроны и позитроны. Позитроны сталкиваются с электронами окружающих тканей. При этом выделяется энергия, которую улавливает томограф, и он формирует картинку. Учёные сравнивают картинку, которую они сделали до задания и во время. Так они узнают, какая часть мозга напряжённо трудилась.

Использование радиоактивных атомов небезопасно для человека. Поэтому сегодня этот метод применяют только в медицинских целях. К тому же появился другой аппарат – безопасный и с более качественным изображением. Это магнитно-резонансная томография (МРТ). На сегодняшний день она считается самым точным и безопасным методом, который используют как для медицинских, так и для исследовательских целей. Ткани тела состоят по большей части из воды, в каждой молекуле которой два атома водорода. Ядра атомов вращаются вокруг своей оси и производят своё магнитное поле. Оси вращения атомов водорода направлены в разные стороны. Огромный магнит выстраивает их параллельно. Затем МРТ-сканер посылает короткими импульсами радиоволны, и прекрасный порядок среди атомов водорода нарушен. Ядра качаются, пытаются вернуться в параллельный строй и излучают при этом радиоволны. Катушки аппарата МРТ улавливают эти волны, а компьютер на их основе составляет картинку. Чем больше атомов водорода собираются в одном месте, тем больше радиоволн они излучают. МРТ показывает, что и где находится: структуры мозга, их размер, толщину белого и серого вещества.

В клиниках обычно используют МРТ-аппараты с мощностью магнитного поля 3 Тесла – в 60 тысяч раз сильнее магнитного поля Земли. Для исследований используют более мощные аппараты 7 и 9, 5 Тесла.

На определении движения молекул воды в мозге основана работа диффузионной спектральной томографии. Это своего рода МРТ для белого вещества – нервных волокон. Она позволяет проследить, куда направлены их пучки, создать трёхмерные модели мозга.

Как работает мозг, покажет функциональная МРТ (фМРТ). Она измеряет, сколько кислорода потребляют нейроны, чтобы сжечь глюкозу. Кислород поступает в мозг через кровь в гемоглобине. В зависимости от того, привязан он к молекуле кислорода или нет, гемоглобин по-разному реагирует на магнитное поле. Различия в насыщенности крови кислородом производят сигнал – так называемый BOLD сигнал – blood oxygen level dependent – зависящий от уровня кислорода в крови. Сигнал лучше там, где есть кислород.

Во время исследований испытуемые должны быть в защитных наушниках, так как аппарат очень громко шумит.

МРТ-сканеры имеют один серьёзный недостаток для исследований – по сравнению с ЭЭГ они очень медленные. Их временное разрешение находится в области секунд, а мозг работает на скорости миллисекунд. Но комбинирование МРТ с другими методами решает эту проблему.

С гемоглобином и кислородом также работает и спектроскопия в ближней инфракрасной области (near-infrared spectroscopy, NIRS). Для неё используют инфракрасный свет, который проникает через черепную крышку и распределяется по поверхности мозга в зависимости от расхода кислорода. Гемоглобин поглощает свет по-разному, в зависимости от количества кислорода. Датчики улавливают оставшийся свет, а компьютер анализирует данные. У испытуемого на голове размещают от 4 до 64 излучателей и приёмников света. Этот метод часто используют для исследования маленьких детей и младенцев. Кости их черепа тоньше, поэтому досягаемость излучения выше. Для исследований речи НИРС тоже хорошо подходит, так как движения органов речи и сопровождающая активность мускулов не нарушают сигнал.

С помощью транскраниальной магнитной стимуляции можно активировать или затормозить исследуемые участки мозга. Для этого с помощью катушки точечно направляют сильное магнитное поле в нужное место. Этот метод позволяет на несколько минут симулировать различные нарушения в работе мозга.

Кроме этих сложных приборов, для исследований речи применяют и более простые поведенческие методы. Они не требуют дорогих и сложных приборов. Например, с помощью секундомера можно измерить время реакции человека на определённые стимулы. Например, в заданиях на лексический выбор испытуемые решают, слышат они настоящее слово или псевдослово. В заданиях на семантический выбор – является ли слово именем собственным или нет.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...