Приливное трение. Кант и Томсон – Тейт
ВРАЩЕНИЕ ЗЕМЛИ И ЛУННОЕ ПРИТЯЖЕНИЕ [404]
Томсон и Тейт, «Натуральная философия», т. I (См. примечание [405]), стр. 191 (§ 276):
«На всех небесных телах, у которых, как у нашей Земли, части их свободной поверхности покрыты жидкостью, имеются благодаря трению, тормозящему приливные движения, также и косвенные сопротивления.[406] Эти сопротивления должны, до тех пор пока указанные тела движутся относительно соседних тел, все время отнимать энергию от их относительных движений. Таким образом, если мы станем прежде всего рассматривать действие одной лишь Луны на Землю с ее океанами, озерами и реками, то мы заметим, что оно должно стремиться уравнять период вращения Земли вокруг своей оси и период обращения обоих тел вокруг их центра инерции; ибо до тех пор, пока эти периоды разнятся друг от друга, приливное действие земной поверхности должно все время отнимать энергию от их движения. Чтобы разобрать этот вопрос подробнее и избежать в то же время ненужных усложнений, предположим, что Луна представляет собой однородное сферическое тело. Взаимное действие и противодействие притяжения между массой Луны и массой Земли можно выразить силой, действующей по прямой, проходящей через центр Луны, и сила эта должна тормозить вращение Земли до тех пор, пока оно совершается в период времени более короткий, чем движение Луны вокруг Земли. Поэтому она должна иметь направление, подобное линии MQ на прилагаемом рисунке, которая представляет – разумеется, с огромным преувеличением – ее отклонение OQ от центра Земли. Но силу, действующую на Луну по прямой MQ, можно разложить на силу, действующую по прямой МО в направлении к центру Земли, приблизительно равную по своей величине всей силе, и на сравнительно очень небольшую силу по прямой МТ, перпендикулярной к МО. Эта последняя сила направлена с очень большим приближением по касательной к орбите Луны в направлении, совпадающем с ее движением. Если подобная сила начнет вдруг действовать, то она сначала увеличит скорость Луны; но по истечении некоторого времени Луна, в силу этого ускорения, настолько удалится от Земли, – что, двигаясь против притяжения Земли, она должна будет потерять в скорости ровно столько, сколько она перед этим приобрела от ускоряющей тангенциальной силы. Непрерывно продолжающееся действие тангенциальной силы, действующей в направлении движения, но столь незначительной по величине, что в каждый момент она производит лишь небольшое отклонение от круговой формы орбиты, имеет своим результатом то, что она постепенно увеличивает расстояние спутника от центрального тела и заставляет утрачиваемую кинетическую энергию движения совершать опять такое же количество работы против притяжения центральной массы, какое производится ею самой. То, что происходит при этом, легко понять, если представить себе, что это движение вокруг центрального тела совершается по медленно развертывающейся спирали, направленной наружу. Если допустить, что сила действует обратно пропорционально квадрату расстояния, то тангенциальная слагающая силы. притяжения, направленная против движения, будет вдвое больше возмущающей тангенциальной силы, действующей в направлении движения, и поэтому половина работы, производимой против первой, производится последней, а другая половина производится кинетической. энергией, отнимаемой от движения. Интегральный эффект действия на движение Луны рассматриваемой нами специальной возмущающей причины легче всего найти, пользуясь принципом сохранения моментов количеств движения. Таким образом, мы находим, что момент количества движения, выигрываемый в какое-либо время движениями центров инерции Луны и Земли относительно их общего центра инерции, равен моменту количества движения, теряемому вращением Земли вокруг своей оси. Сумма моментов количества движения центров инерции Луны и Земли, как они движутся в настоящее время, приблизительно в 4,45 раза больше теперешнего момента количества движения вращения Земли. Средняя плоскость первого движения совпадает с плоскостью эклиптики, и поэтому оси обоих количеств движения наклонены друг к другу под средним углом в 23°27,5', углом, который мы, пренебрегая влиянием Солнца на плоскость лунной орбиты, можем принять за теперешний наклон обеих осей. Результирующий, или совокупный, момент количества движения поэтому в 5,38 раза больше момента количества движения теперешнего вращения Земли, и его ось наклонена к земной оси под углом в 19°13′. Следовательно, конечная тенденция приливов состоит в том, чтобы свести Землю и Луну к простому равномерному вращению с этим результирующим моментом вокруг этой результирующей оси, как если бы они были двумя частями одного твердого тела; при этом расстояние Луны увеличилось бы (приблизительно) в отношении 1:1,46, являющемся отношением квадрата теперешнего момента количества движения центров инерции к квадрату совокупного момента количества движения, а период обращения увеличился бы в отношении 1:1,77, являющемся отношением кубов тех же самых количеств. Поэтому расстояние Луны от Земли увеличилось бы до 347100 миль, а период обращения удлинился бы до 48,36 дня. Если бы во вселенной не было иных тел, кроме Земли и Луны, то эти два тела могли бы вечно двигаться таким образом по круговым орбитам вокруг своего общего центра инерции, причем Земля вращалась бы вокруг своей оси в тот же самый период, обращая к Луне всегда одну и ту же сторону, так что вся жидкость на ее поверхности находилась бы в относительном покое по отношению к твердой части шара.
Но благодаря существованию Солнца подобное положение не могло бы быть постоянным. На Земле должны были бы происходить солнечные приливы – дважды прилив и дважды отлив в течение периода обращения Земли относительно Солнца (другими словами, дважды в течение солнечного дня, или, что было бы тем же самым, в течение месяца). Это не могло бы продолжаться без потери энергии от трения жидкости. Нелегко проследить весь ход возмущения, производимого этой причиной в движениях Земли и Луны, но конечным его результатом должно быть то, что Земля, Луна и Солнце начнут вращаться вокруг своего общего центра инерции подобно частям одного твердого тела».
В 1754 г. Кант впервые высказал тот взгляд, что вращение Земли замедляется приливным трением и что действие это будет завершено лишь тогда, «когда ее» (Земли) «поверхность окажется в относительном покое по отношению к Луне, т. е. когда она начнет вращаться вокруг своей оси в то же самое время, в какое Луна обходит Землю, следовательно, когда Земля будет всегда обращена к Луне одной и той же стороной».[407] При этом он был того мнения, что это замедление происходит только от приливного трения, т. е. от наличия жидких масс на Земле. «Если бы Земля была совершенно твердой массой, без наличия на ней каких бы то ни было жидкостей, то ни притяжение Солнца, ни притяжение Луны не могли бы сколько-нибудь изменить ее свободного вращения вокруг оси, ибо это притяжение действует с одинаковой силой как на восточные, так и на западные части земного шара и поэтому не вызывает никакого стремления ни в ту, ни в другую сторону; следовательно, оно нисколько не мешает Земле продолжать свое вращение с такой же свободой, как если бы она не испытывала никаких внешних влияний».[408] Кант был вправе удовольствоваться этим результатом. Тогда еще отсутствовали все научные предпосылки для более углубленного понимания влияния Луны на вращение Земли. Ведь потребовалось почти сто лет, прежде чем кантовская теория стала общепризнанной, и прошло еще больше времени, пока открыли, что приливы и отливы – это только видимая сторона действия притяжения Солнца и Луны, влияющего на вращение Земли. Эта более общая концепция и развита Томсоном и Тейтом. Притяжение Луны и Солнца действует не только на жидкие массы земного шара или его поверхности, но вообще на всю массу Земли, тормозя ее вращение. До тех пор пока период вращения Земли не совпадет с периодом обращения Луны вокруг Земли, до тех пор притяжение Луны – если ограничиться пока им одним – будет стремиться все более и более уравнять оба эти периода. Если бы период вращения (относительного) центрального тела был продолжительнее, чем время обращения спутника, то первый стал бы постепенно укорачиваться; если он короче, как это имеет место в системе «Земля – Луна», то он будет удлиняться. Но ни в первом случае кинетическая энергия не создается из ничего, ни во втором она не уничтожается. В первом случае спутник приблизился бы к центральному телу, и период его обращения сократился бы, а во втором он удалился бы от центрального тела и получил бы более продолжительный период обращения. В первом случае спутник благодаря приближению к центральному телу теряет столько потенциальной энергии, сколько выигрывает в кинетической энергии центральное тело благодаря ускоренному вращению; во втором же случае спутник выигрывает благодаря увеличению своего расстояния от центрального тела ровно столько в потенциальной энергии, сколько центральное тело теряет в кинетической энергии вращения. Общая же сумма имеющейся в системе «Земля – Луна» динамической энергии (потенциальной и кинетической) остается неизменной; эта система вполне консервативна.
Мы видим, что теория эта совершенно не зависит от физико-химического строения соответствующих тел. Она вытекает из общих законов движения свободных небесных тел, связь между которыми устанавливается притяжением, действующим пропорционально массам и обратно пропорционально квадратам расстояний. Она возникла явным образом как обобщение кантовской теории приливного трения и даже излагается здесь Томсоном и Тейтом как математическое обоснование этого учения. Но в действительности эта теория исключает специальный случай приливного трения, хотя ее авторы удивительным образом даже и не подозревают этого. Трение является тормозом для движения масс, и в течение столетий оно рассматривалось как нечто уничтожающее движение масс, т. е. уничтожающее кинетическую энергию. Теперь мы знаем, что трение и удар являются двумя формами превращения кинетической энергии в молекулярную энергию, в теплоту. Таким образом, в каждом случае трения кинетическая энергия как таковая исчезает, чтобы появиться вновь не в виде потенциальной энергии, в смысле динамики, а как молекулярное движение в определенной форме теплоты. Следовательно, потерянная в силу трения кинетическая энергия пока что действительно потеряна для динамических соотношений рассматриваемой системы. Динамически действенной она могла бы стать вновь лишь в том случае, если бы превратилась обратно из формы теплоты в кинетическую энергию.
Как же обстоит дело в случае приливного трения? Ясно, что и здесь вся кинетическая энергия, сообщенная притяжением Луны водным массам на земной поверхности, превращается в теплоту как благодаря трению водяных частиц друг о друга в силу вязкости воды, так и благодаря трению воды о твердую оболочку земной поверхности и размельчению противодействующих приливному движению горных пород. Из этой теплоты обратно в кинетическую энергию превращается лишь та исчезающе малая часть, которая содействует испарению водных поверхностей. Но и это исчезающе малое количество кинетической энергии, уступленной системою «Земля – Луна» тому или иному участку земной поверхности, остается пока что на земной поверхности и подчиняется господствующим там условиям, которые всей действующей на ней энергии готовят одну и ту же конечную участь: превращение в конце концов в теплоту и излучение в мировое пространство. Итак, поскольку приливное трение бесспорно тормозит вращение Земли, постольку употребленная на это кинетическая энергия абсолютно теряется для динамической системы «Земля – Луна». Следовательно, она не может снова появиться внутри этой системы в виде динамической потенциальной энергии. Иными словами, из кинетической энергии, потраченной вследствие притяжения Луны на торможение вращения Земли, может полностью появиться снова в качестве динамической потенциальной энергии, т. е. может быть компенсирована путем соответствующего увеличения расстояния Луны от Земли, лишь та часть, которая действует на твердую массу земного шара. Та же часть, которая действует на жидкие массы Земли, может дать этот эффект лишь постольку, поскольку она не приводит эти массы в движение, направленное в сторону, противоположную вращению Земли, ибо это движение превращается целиком в теплоту и в конце концов благодаря излучению оказывается потерянным для системы. То, что сказано о приливном трении на поверхности Земли, относится также и к гипотетически принимаемому иногда приливному трению предполагаемого жидкого ядра. Любопытно во всей этой истории то, что Томсон и Тейт не замечают, как они для обоснования теории приливного трения выдвигают теорию, исходящую из молчаливой предпосылки, что Земля является совершенно твердым телом, т. е. исключающую всякую возможность приливов, а значит и приливного трения.
ТЕПЛОТА [409]
Как мы видели, существуют две формы, в которых исчезает механическое движение, живая сила. Первая – это его превращение в механическую потенциальную энергию путем, например, поднятия какого-нибудь груза. Эта форма отличается не только той особенностью, что она может превратиться обратно в механическое движение – и притом механическое движение, обладающее той же самой живой силой, что и первоначальное движение, – но также и той особенностью, что она способна лишь на эту единственную перемену формы. Механическая потенциальная энергия никогда не может произвести теплоты или электричества, не перейдя предварительно в действительное механическое движение. Это, пользуясь термином Клаузиуса, «обратимый процесс». Вторая форма исчезновения механического движения имеет место при трении и ударе, отличающихся друг от друга только по степени. Трение можно рассматривать как ряд маленьких ударов, происходящих друг за другом и друг подле друга; удар можно рассматривать как концентрированное в одном месте и на один момент трение. Трение – это хронический удар, удар – мгновенное трение. Исчезающее здесь механическое движение исчезает как таковое. Оно непосредственно не восстановимо из самого себя. Процесс непосредственно не обратим. Механическое движение превратилось в качественно отличные формы движения, в теплоту, в электричество – в формы молекулярного движения. Таким образом, трение и удар приводят от движения масс, предмета механики, к молекулярному движению, предмету физики. Когда мы называли физику механикой молекулярного движения, то при этом не упускалось из виду, что это выражение отнюдь не охватывает всей области теперешней физики. Наоборот. Эфирные колебания, которые опосредствуют явления света и лучистой теплоты, конечно, не являются молекулярными движениями в теперешнем смысле слова. Но их земные действия затрагивают прежде всего молекулы: преломление света, поляризация света и т. д. обусловлены молекулярным строением соответствующих тел. Точно так же почти все крупнейшие исследователи рассматривают теперь электричество как движение эфирных частиц, и даже о теплоте Клаузиус говорит, что в «движении весомых атомов» (лучше было бы, конечно, сказать: молекул) «… может принимать участие и находящийся в теле эфир» («Механическая теория теплоты», т. i, стр. 22). Тем не менее, когда мы имеем дело с электрическими и тепловыми явлениями, то нам опять-таки прежде всего приходится рассматривать молекулярные движения; это и не может быть иначе, пока мы так мало знаем об эфире. Но когда мы настолько продвинемся вперед, что сможем дать механику эфира, то в нее, разумеется, войдет и многое такое, что теперь по необходимости причисляется к физике. О таких физических процессах, при которых структура молекул изменяется или даже совсем уничтожается, речь будет ниже. Они образуют переход от физики к химии. Только с молекулярным движением изменение формы движения приобретает полную свободу. В то время как на границе механики движение масс может принимать только немногие другие формы – теплоту или электричество, – здесь перед нами совершенно иная картина оживленного изменения форм: теплота переходит в электричество в термоэлементе, становится тождественной со светом на известной ступени излучения, производит со своей стороны снова механическое движение; электричество и магнетизм, образующие такую же пару близнецов, как теплота и свет, не только переходят друг в друга, но переходят и в теплоту и в свет, а также в механическое движение. И это происходит согласно столь определенным отношениям меры, что мы можем выразить данное количество каждой из этих форм движения в любой другой форме – в килограммометрах, в единицах теплоты, в вольтах[410] – и можем переводить каждую меру в любую другую. Практическое открытие превращения механического движения в теплоту так старо, что от него можно было бы считать начало человеческой истории. Какие бы достижения ни предшествовали этому открытию – в виде изобретения орудий и приручения животных, – но только научившись добывать огонь с помощью трения, люди впервые заставили служить себе некоторую неорганическую силу природы. Какое глубокое впечатление произвело на человечество это гигантское, почти неизмеримое по своему значению открытие, показывают еще теперешние народные суеверия. Изобретение каменного ножа, этого первого орудия, чествовалось еще много времени спустя после введения в употребление бронзы и железа: все религиозные жертвоприношения совершались с помощью каменных ножей. По еврейскому преданию, Иисус Навин приказал совершить обрезание над родившимися в пустыне мужчинами при помощи каменных ножей;[411] кельты и германцы пользовались в своих человеческих жертвоприношениях только каменными ножами. Но все это давно забыто. Иначе дело обстоит с огнем, получаемым при помощи трения. Много времени спустя после того, как людям стали известны другие способы получения огня, всякий священный огонь должен был у большинства народов добываться путем трения. Еще и поныне в большинстве европейских стран существует народное поверье о том, что чудотворный огонь (например, у нас, немцев, огонь для заклинаний против поветрия на животных) может быть зажжен лишь при помощи трения. Таким образом, еще и в наше время благодарная память о первой большой победе человека над природой продолжает полубессознательно жить в народном суеверии, в остатках язычески-мифологических воспоминаний образованнейших народов мира. Однако процесс, совершающийся при добывании огня трением, носит еще односторонний характер. Здесь механическое движение превращается в теплоту. Чтобы завершить этот процесс, надо добиться его обращения – превращения теплоты в механическое движение. Только тогда диалектика процесса получает надлежащее удовлетворение, и процесс исчерпывается в круговороте – по крайней мере для начала. Но история имеет свой собственный ход, и сколь бы диалектически этот ход ни совершался в конечном счете, все же диалектике нередко приходится довольно долго дожидаться истории. Вероятно, прошли многие тысячелетия со времени открытия добывания огня трением до того, как Герон Александрийский (около 120 г. до н. э.) изобрел машину, которая приводилась во вращательное движение вытекающим из нее водяным паром. И прошло еще снова почти две тысячи лет, пока не была построена первая паровая машина, первое приспособление для превращения теплоты в действительно полезное механическое движение. Паровая машина была первым действительно интернациональным изобретением, и этот факт в свою очередь свидетельствует об огромном историческом прогрессе. Паровую машину изобрел француз Папен, но в Германии. Немец Лейбниц, рассыпая вокруг себя, как всегда, гениальные идеи без заботы о том, припишут ли заслугу открытия этих идей ему или другим, – Лейбниц, как мы знаем теперь из переписки Папена (изданной Герландом),[412] подсказал ему при этом основную идею: применение цилиндра и поршня. Вскоре после этого англичане Севери и Ньюкомен изобрели подобные же машины; наконец, их земляк Уатт, введя отдельный конденсатор, придал паровой машине в принципе ее современный вид. Круговорот изобретений в этой области был завершен: было осуществлено превращение теплоты в механическое движение. Все дальнейшее было только усовершенствованием деталей. Итак, практика по-своему решила вопрос об отношениях между механическим движением и теплотой: она сперва превратила первое во вторую, а затем вторую в первое. А как обстояло дело с теорией? Довольно печально. Хотя именно в XVII и XVIII веках бесчисленные описания путешествий кишели рассказами о диких народах, не знавших другого способа получения огня, кроме трения, но физики этим почти совершенно не интересовались; с таким же равнодушием относились они в течение всего XVIII и первых десятилетий XIX века к паровой машине. В большинстве случаев они ограничивались простым регистрированием фактов. Наконец, в двадцатых годах Сади Карно занялся этим вопросом и разработал его очень искусным образом, так что лучшие из его вычислений, которым Клапейрон позднее придал геометрическую форму, сохранили свое значение и до нынешнего дня в работах Клаузиуса и Клерка Максвелла. Он добрался почти до сути дела; полностью разобраться в вопросе ему помешал не недостаток фактического материала, а исключительно только предвзятая ложная теория, и притом такая ложная теория, которая была навязана физикам не какой-нибудь злокозненной философией, а придумана ими самими при помощи их собственного натуралистического способа мышления, столь якобы превосходящего метафизически-философствующий способ мышления. В XVII веке теплота считалась – по крайней мере в Англии – некоторым свойством тел, «движением особого рода, природа которого никогда не была объяснена удовлетворительным образом». Так называет ее Т. Томсон за два года до открытия механической теории теплоты («Очерк наук о теплоте и электричестве», 2 изд., Лондон, 1840).[413] Но в XVIII веке все более и более завоевывал себе господство взгляд, что теплота, как и свет, электричество, магнетизм, – особое вещество и все эти своеобразные вещества отличаются от обычной материи тем, что они не обладают весом, что они невесомы.
ЭЛЕКТРИЧЕСТВО [414]
В «Nature» от 15 июня 1882 г. отмечен этот «замечательный трактат, который в выходящем теперь издании, с добавлением об электростатике, будет самым значительным из существующих экспериментальных трактатов по электричеству». [415]
Как и теплота, только в другом роде, электричество некоторым образом вездесуще. На Земле не происходит почти ни одного изменения, не сопровождаемого какими-нибудь электрическими явлениями. При испарении воды, при горении пламени, при соприкосновении двух различных или неодинаково нагретых металлов, при соприкосновении железа и раствора медного купороса и т. д. происходят, наряду с более бросающимися в глаза физическими и химическими явлениями, одновременно и электрические процессы. Чем тщательнее мы изучаем самые различные процессы природы, тем чаще наталкиваемся при этом на следы электричества. Но, несмотря на эту вездесущность электричества, несмотря на тот факт, что за последние полвека его все больше и больше заставляют служить человеку в области промышленности, оно является именно той формой движения, насчет существа которой царит еще величайшая неясность. Открытие гальванического тока произошло приблизительно на 25 лет позже открытия кислорода и имеет для учения об электричестве по меньшей мере такое же значение, как открытие кислорода для химии. И тем не менее, какое огромное различие наблюдается еще и в наше время между этими двумя областями! В химии, особенно благодаря дальтоновскому открытию атомных весов, мы находим порядок, относительную устойчивость однажды достигнутых результатов и систематический, почти планомерный натиск на еще не завоеванные области, сравнимый с правильной осадой какой-нибудь крепости. В учении же об электричестве мы имеем перед собой хаотическую груду старых, ненадежных экспериментов, не получивших ни окончательного подтверждения, ни окончательного опровержения, какое-то неуверенное блуждание во мраке, не связанные друг с другом исследования и опыты многих отдельных ученых, атакующих неизвестную область вразброд, подобно орде кочевых наездников. И в самом деле, в области электричества еще только предстоит сделать открытие, подобное открытию Дальтона, открытие, дающее всей науке средоточие, а исследованию – прочную основу. Вот это-то состояние разброда в современном учении об электричестве, делающее пока невозможным установление какой-нибудь всеобъемлющей теории, главным образом и обусловливает то, что в этой области господствует односторонняя эмпирия, та эмпирия, которая сама, насколько возможно, запрещает себе мышление, которая именно поэтому не только мыслит ошибочно, но и оказывается не в состоянии верно следовать за фактами или хотя бы только верно излагать их и которая, таким образом, превращается в нечто противоположное действительной эмпирии. Если тем господам естествоиспытателям, которые изощряются в злословии по поводу нелепых априористических спекуляций немецкой натурфилософии, следует вообще порекомендовать чтение теоретических работ физиков эмпирической школы, не только современных работам натурфилософов, но даже и более поздних, то особенно это относится к учению об электричестве. Возьмем относящуюся к 1840 г. работу «Очерк наук о теплоте и электричестве» Томаса Томсона. Ведь старик Томсон был в свое время авторитетом; кроме того, в его распоряжении была уже весьма значительная часть трудов величайшего до настоящего времени исследователя в области электричества – Фарадея. И несмотря на это, в его книге содержатся по меньшей мере столь же нелепые вещи, как и в соответствующем отделе гораздо более ранней по времени гегелевской «Философии природы». Так, например, описание электрической искры можно было бы прямо получить путем перевода соответствующего места у Гегеля. Оба они перечисляют все те диковинные вещи, которые находили в электрической искре до познания действительной природы и многообразия различных форм ее и относительно которых теперь доказано, что они по большей части являются частными случаями или же заблуждениями. Мало того, Томсон на стр. 416 самым серьезным образом рассказывает сказки Дессеня, будто в случае повышения барометра и падения термометра стекло, смола, шелк и т. д. заряжаются при погружении в ртуть отрицательным электричеством, в случае же падения барометра и повышения температуры – положительным электричеством; будто золото и некоторые другие металлы становятся летом при согревании электроположительными, а при охлаждении – электроотрицательными, зимою же наоборот; будто при высоком давлении и северном ветре они сильно электризуются – положительно при повышении температуры, отрицательно при падении ее и т. д. Так обстоит дело у Томсона по части изложения фактов. Что же касается априористической спекуляции, то Томсон угощает нас следующей теорией электрической искры, автором которой является не кто иной, как сам Фарадей: «Искра – это разряд, или ослабление поляризованного индукционного состояния многих диэлектрических частиц благодаря своеобразному действию некоторых немногих из этих частиц, занимающих крайне небольшое и ограниченное пространство. Фарадей допускает, что те немногие частицы, в которых происходит разряд, не только отрываются друг от друга, но и принимают временно некоторое особенное, весьма активное (highly exalted) состояние, т. е. что все окружающие их силы одна за другой сосредоточиваются на них и благодаря этому они приводятся в соответствующую интенсивность состояния, которая, быть может, равна интенсивности химически соединяющихся атомов; что затем они разряжают эти силы, – подобно тому как те атомы разряжают свои силы, – неизвестным нам до сих пор способом, и это конец всего (and so the end of the whole). Конечный эффект в точности таков, как если бы мы вместо разряжающейся частицы имели некоторую металлическую частицу, и не невозможно, что принципы действия в обоих случаях окажутся когда-нибудь тождественными».[416]«Я здесь передал», – прибавляет Томсон, – «это объяснение Фарадея его собственными словами, ибо я его не совсем понимаю». Это могут, несомненно, сказать и другие точно так же, как когда они читают у Гегеля, что в электрической искре «особенная материальность напряженного тела еще не входит в процесс, а только определена в нем элементарно и как проявление души» и что электричество – это «собственный гнев, собственное бушевание тела», его «гневная самость», которая «проявляется в каждом теле, когда его раздражают» («Философия природы», § 324, Добавление).[417] И все же основная мысль у Гегеля и Фарадея тождественна. Оба восстают против того представления, будто электричество есть не состояние материи, а некоторая особая, отдельная материя. А так как в искре электричество выступает, по-видимому, как нечто самостоятельное, свободное, обособленное от всякого чуждого материального субстрата и тем не менее чувственно воспринимаемое, то при тогдашнем состоянии науки они неизбежно должны были прийти к мысли о том, что искра есть мимолетная форма проявления некоторой «силы», освобождающейся на мгновение от всякой материи. Для нас загадка, конечно, решена с тех пор, как мы знаем, что при искровом разряде между металлическими электродами действительно перескакивают «металлические частицы» и что, следовательно, «особенная материальность напряженного тела» действительно «входит в процесс». Как известно, электричество и магнетизм принимались первоначально, подобно теплоте и свету, за особые невесомые материи. В отношении электричества, как известно, вскоре пришли к представлению о двух противоположных материях, двух «жидкостях» – положительной и отрицательной, которые в нормальном состоянии нейтрализуют друг друга, пока они не отделены друг от друга так называемой «электрической разъединительной силой». В последнем случае можно из двух тел одно зарядить положительным электричеством, другое – отрицательным. Если соединить оба эти тела при помощи третьего, проводящего тела, то происходит выравнивание напряжений, совершающееся в зависимости от обстоятельств или внезапно или же посредством длительного тока. Явление внезапного выравнивания казалось очень простым и понятным, но зато объяснение тока представляло трудности. В противоположность наипростейшей гипотезе, что в токе движется каждый раз либо одно лишь положительное, либо одно лишь отрицательное электричество, Фехнер и, в более развитом виде, Вебер выдвинули тот взгляд, что в замкнутой цепи всегда движутся рядом друг с другом два равных, текущих в противоположных направлениях тока положительного и отрицательного электричеств по каналам, расположенным между весомыми молекулами тел. При подробной математической разработке этой теории Вебер приходит под конец к тому, чтобы помножить некоторую – здесь неважно, какую – функцию на величину 1/r, где это 1/r означает «отношение единицы электричества к миллиграмму» (Видеман, «Учение о гальванизме» и т. д., 2-е изд., кн. III, стр. 569). Но отношение к мере веса может, разумеется, быть только весовым отношением. Таким образом, односторонняя эмпирия, увлекшись математическими выкладками, настолько отучилась от мышления, что невесомое электричество становится у нее здесь уже весомым и вес его вводится в математические выкладки. Выведенные Вебером формулы имели значение только в известных границах; и вот Гельмгольц еще несколько лет тому назад, исходя из этих формул, пришел путем вычислений к результатам, противоречащим закону сохранения энергии. Веберовской гипотезе о двойном, противоположно направленном токе К. Нейман противопоставил в 1871 г. другую гипотезу, а именно: что в токе движется только одно из электричеств, например положительное, а другое – отрицательное – прочно связано с массой тела. В связи с этим мы встречаем у Видемана следующее замечание: «Эту гипотезу можно было бы соединить с гипотезой Вебера, если к предполагаемому Вебером двойному току текущих в противоположных направлениях электрических масс ±72e присоединить еще некоторый, внешне не проявляющийся ток нейтрального электричества, увлекающий с собой в направлении положительного тока электрические массы ±1/2e» (кн. iii, стр. 577). Это утверждение опять-таки характерно для односторонней эмпирии. Для того чтобы электричество могло вообще течь, его разлагают на положительное и отрицательное. Но все попытки объяснить ток, исходя из этих двух материй, наталкиваются на трудности. И это относится одинаково как к гипотезе, что в токе имеется каждый раз лишь одна из этих материй, так и к гипотезе, что обе материи текут одновременно в противоположных направлениях, и, наконец, также и к той третьей гипотезе, что одна материя течет, а другая остается в покое. Если мы станем придерживаться этой последней гипотезы, то как мы объясним себе то необъяснимое представление, что отрицательное электричество, которое ведь достаточно подвижно в электрической машине и в лейденской банке, оказывается в токе прочно связанным с массой тела? Очень просто. Наряду с положительным током +e, который течет по проволоке направо, и отрицательным током —e, который течет налево, мы принимаем еще третий ток нейтрального электричества ±1/2e, текущий направо. Таким образом, мы сперва допускаем, что оба электричества могут вообще течь лишь в том случае, если они отделены друг от друга; а для объяснения явлений, наблюдающихся при течении раздельных электричеств, мы допускаем, что они могут течь и не отделенными друг от друга. Сперва мы делаем некоторое предположение, чтобы объяснить данное явление, а при первой трудности, на которую мы наталкиваемся, делаем другое предположение, которое прямо отменяет первое. Какова должна быть та философия, на которую имели бы хоть какое-нибудь право жаловаться эти господа? Но, наряду с этим взглядом на электричество как на особого рода материю, вскоре появилась и другая точка зрения, согласно которой оно является простым состоянием тел, «силой», или, как мы сказали бы теперь, особой формой движения. Мы выше видели, что Гегель, а впоследствии Фарадей разделяли эту точку зрения. После того как открытие механического эквивалента теплоты окончательно устранило представление о каком-то особом «теплороде» и доказало, что теплота есть некое молекулярное движение, следующим шагом было применение нового метода также и к изучению электричества и попытка определить его механический эквивалент. Это удалось вполне. В особенности опыты Джоуля, Фавра и Рауля не только установили механический и термический эквиваленты так называемой «электродвижущей силы» гальванического тока, но и доказали ее полную эквивалентность энергии, высвобождаемой химическими процессами в гальваническом элементе или потребляемой ими в электролитической ванне. Благодаря этому делалась все более несостоятельной гипотеза о том, будто электричество есть какая-то особая материальная жидкость. Однако аналогия между теплотой и электричеством была все же неполной. Гальванический ток все еще отличался в очень существенных пунктах от теплопроводности. Все еще нельзя было указать, что собственно движется в электрически заряженных телах. Допущение простых молекулярных колебаний, как в случае теплоты, оказалось здесь недостаточным. При колоссальной скорости электричества, превосходящей даже скорость света,[418] все еще трудно было отказаться от представления, что между молекулами тела здесь движется нечто вещественное. Здесь-то и выступают новейшие теории Клерка Максвелла (1864 г.), Ханкеля (1865 г.), Ренара (1870 г.) и Эдлунда (1872 г.) в согласии с высказанной уже в 1846 г. впервые Фарадеем гипотезой, что
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|