Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

8.2. Асинхронный ход возбужденного генератора




 

В доаварийном режиме генератор работает синхронно на энергосистему. (рис. 8. 2. )

Рис. 8. 2. Схема работы генератора на энергосистему.

При синусоидальных э. д. с. генератора

(8. 1)

и энергосистемы

 (8. 2)

и одинаковой частоте вращения  э. д. с. изображаются векторами  и , сдвинутыми между собой на угол . Расчет токов и напряжений в этой схеме выполняется с использованием комплексных величин.

При асинхронном ходе э. д. с. генератора равна  и э. д. с. энергосистемы , т. е. э. д. с. этих источников имеют разные частоты . Положим . В таком случае угол будет расти . Здесь время отсчитывается с момента возникновения асинхронного хода;  - скольжение. Скольжение выражают также в относительных единицах .

При возникновении скольжения создается асинхронный момент Мас и генератор генерирует асинхронную мощность. С некоторыми упрощениями можно представить полный электромагнитный момент синхронной машины двумя составляющими: синхронной Мсн и асинхронной Мас, причем М=Мснас, Соответственно мощность Р=Рснас. При этом приближенно можно считать, что наличие возбуждения не оказывает влияние на асинхронную составляющую Рас, т. е. при расчетах можно использовать наложение синхронных и асинхронных моментов и мощностей [7].

Синхронная составляющая момента Мсн зависит от параметров машины, тока возбуждения, приложенного напряжения и угла , а асинхронная составляющая момента Мас - от параметров машины, приложенного напряжения, угла  и скорости его изменения, т. е. скольжения . В упрощенных расчетах оперируют усредненным асинхронным моментом Мас. ср, который не зависит от угла .

Рассмотрим режим с бесконечно малым скольжением . В таком случае асинхронный момент мал, и его можно не учитывать. Выдаваемая мощность генератора будет определяться только его синхронной мощностью.

С учетом сказанного, можно построить векторную диаграмму по рис. 8. 2 для любых значений  и найти , ток и напряжение в любой точке схемы.

Бесконечно малое скольжение предполагает близость частот  и , т. е. наличие в схеме как бы одночастотной э. д. с. Это упрощение помогает раскрыть картину асинхронного режима, выяснить основные закономерности и получить приближенную количественную оценку параметров. Такой подход будет использован нами в начале рассмотрения проблемы. В дальнейшем изложении при построении векторных диаграмм сопротивление Zр в комплексной плоскости будет учтено действие асинхронного момента (мощности), используя при этом принцип суперпозиции, о чем сказано выше.

Допустимость сделанных упрощений поясним еще раз следующими соображениями. Пусть  и . Уравнительный ток в линии определится разностью э. д. с. источников

 (8. 3)

Ради упрощения, рассмотрим случай, когда . При этом  (8. 4)

или

.

Из этих формул следует, что  представляет собой гармоническое колебание со средней частотой , амплитуда которого изменяется во времени по закону . Строго говоря, этот сигнал не является чисто гармоническим, что затрудняет математические операции с ним.

В инженерных задачах идут на некоторые упрощения, допустимые с точки зрения точности расчетов. Так, при исследовании поведения релейной защиты в асинхронном режиме, следует помнить, что подавляющее большинство реле реагирует на действующее значение тока (напряжения), при этом время наблюдения за сигналом составляет один или почти один период промышленной частоты [17]. В таком случае при частоте скольжения Гц на отрезке времени мс можно считать Em(t) = const и рассматривать e(t) как гармонический сигнал со средней частотой  и постоянной амплитудой.

Для одночастотного сигнала можно оперировать комплексными сопротивлениями

, где , а также комплексными токами  и напряжениями .

С учетом сказанного, для действующего значения уравнительного тока в линии запишем

(8. 6)

График изменения тока в функции угла  показан на рис. 8. 3. На этом же рисунке показано изменение активной мощности генератора, рассчитанной по формуле:

. (8. 7)

Рис. 8. 3. График изменения тока  и активной мощности Р( ) генератора

Из графика следует, что асинхронный режим генератора является очень тяжелым режимом - через генератор протекает очень большой уравнительный ток, а активная мощность принимает весьма большие значения при углах , где п = 0, 1, 2... и меняет свой знак в течение одного проворота ротора.

Принимая во внимание высказанную выше оговорку об одночастотности сигнала, можно рассчитывать напряжение в n-ой точке сети по формуле:

.

Характерным режимом является случай , для которого построена векторная диаграмма на рис. 8. 4. Здесь схема представлена сопротивлениями генератора Zг, линии Zл, и энергосистемы Zc. Э. д. с. генератора Ег и системы Ес приложены по концам схемы и сдвинуты на 180°, что соответствует рассматриваемому случаю.

 

Рис. 8. 4. Векторная диаграмма э. д. с. для угла

Полагая , получим уравнительный ток чисто реактивным, сдвинутым относительно э. д. с. на угол 90°, тогда падение напряжения  будет совпадать по фазе с направлением э. д. с. В таком случае величина напряжения в точке «n» будет равна и эпюра напряжений вдоль линии электропередач изобразится прямой, соединяющей концы векторов  и .

В некоторой точке Ц, называемой электрическим центром, напряжение равно нулю. Во всех точках сети от э. д. с. Ег до электрического центра напряжение совпадает по направлению с вектором . После точки Ц напряжение (в точке «т») будет ориентировано согласно с вектором .

Для энергосистемы большой мощности можно положить сопротивление энергосистемы . Тогда вектор Ёс переместится в точку «m» и будет изображаться вектором , а эпюра напряжений вдоль схемы будет определяться линией, соединяющей концы векторов и . Отсюда следует, что электрический центр также сместится и займет положение Ц*. При работе блока генератор-трансформатор на шины бесконечной мощности электрический центр будет располагаться «внутри» блока генератор-трансформатор.

Если э. д. с. генератора уменьшить до значения , то эпюра напряжений также изменится. Если генератор невозбужден, т. е. , то центр проворота переместится в нейтраль генератора.

Релейная защита, реагирующая на напряжение (реле напряжения, дистанционное реле) и расположенная вблизи от электрического центра отреагирует на факт снижения напряжения как на короткое замыкание в точке Ц. Это обстоятельство должно учитываться при выборе уставок таких защит.

На рис. 8. 5 показана схема сети и векторная диаграмма напряжения в месте установки реле при асинхронном ходе. Пусть , а также . С изменением угла  в схеме действует э. д. с.

.

Рис. 8. 5. Схема сети (а) и векторная диаграмма (б).

Напряжение  определяется так

. (8. 9)

Обозначим , тогда

. (8. 10)

Это уравнение определяет собой окружность, которая проходит через точки: при , , если , то

Для случая  окружность отмечена цифрой 1. При этом конец вектора  скользит по окружности 1.

Если   , то окружность Up( ) охватывает начало координат (отмечено цифрой 2). Теперь вектор  вращается с частотой и дополнительно колеблется относительно вектора Ег.

Еще раз обратимся к выражению

. (8. 11)

Такая запись формулы справедлива в пределах изменения угла . При дальнейшем увеличении угла функция  меняет знак, вследствие чего может создаваться неправильное представление, что после  сигнал  следует изображать в виде пунктирной линии 2 (рис. 8. 6), промодулированный по закону .

Для сигнала e(t) корректнее оперировать углом  (рис. 8. 6, б). График изменения углов  и  показаны на рис. 8. 6, в. В пределах углов 0-360° формула  справедлива, но при дальнейшем скольжении вектора  относительно вектора Е2 вектор Е" уменьшается до нуля и после угла 360° возрождается в виде , т. е. как бы поворачивается на 180°. На рис. 8. 6, в это отмечено скачкообразным изменением угла  от 180° до 360°. После угла 360° функция  положительна.

 


Рис. 8. 6. Изменение тока (а) и диаграммы напряжений и э. д. с. (б, в) при асинхронном ходе

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...