Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Цель и задачи исследования




Введение

Гальваника - применяется для покрытия металлических предметов тонким слоем другого металла. Благодаря такому покрытию гальваника защищает металлические конструкции от коррозии и воздействия агрессивной окружающей среды. В гальванике используют различные способы покрытия, которые зависят от назначения и условий работы изделия. Металл, посредством которого выполняется гальваника, выбирается по такому же принципу, это может быть цинк, медь, железо, никель, серебро, золото или хром.

В ряде случаев необходимо нанести тонкий (толщиной 0,01—0,03 мм) металлический слой на поверхность изделий. Процессы склеивания, пайки, сварки тонкой металлической фольги к изделию не всегда обеспечивают выполнение требуемых условий. Поэтому для нанесения тонких металлических пленок, прочно соединенных с материалом изделия, прибегают к гальваническому наращиванию. Последнее производят не только на металлические изделия, но и на неметаллические, такие как пластмассы и минералокерамика. Рассмотрим процесс гальванического наращивания керамического изделия. Предварительно поверхность изделия шлифуют с целью получения требуемых размеров. Следует иметь в виду, что при форсированных режимах шлифования происходит «вторжение» абразивных частиц в обрабатываемую поверхность, что ведет к ухудшению адгезионных свойств. Поэтому шлифование следует вести при поперечной подаче круга не более 0,006—0,008 мм на ход и частоте вращения шлифовального алмазного круга 7—8 тыс. об/мин (окружная скорость 38—42 м/с).

После очистки от остатков абразива, смазочно-охлаждающей жидкости производят металлизацию поверхности изделия, подвергаемого гальваническому наращиванию. Процесс металлизации включает две операции: химическое осаждение и гальваническое наращивание меди. Непосредственно перед осаждением меди поверхность очищают с помощью ультразвука, сенсибилизируют в 2—3%-ном растворе хлористого палладия. Химическое осаждение меди ведут в растворе, содержащем 40 г сернокислой меди, 35 г едкого натра и 80 г сегнетовой соли на 1 л дистиллированной воды с добавлением 20 мл формалина. Толщина слоя химической меди должна быть не менее 0,002—0,003 мм, иначе возможно растравливание образовавшейся пленки при гальваническом наращивании.

 

Металлизацию наружной поверхности вместо химического осаждения можно вести напылением в вакууме. Для получения тонкопленочных металлических покрытий термическим напылением в обычно тлеющем разряде применяют отечественную установку УВР-2М.

Слой гальванически осажденной или напыленной меди должен быть не менее 0,005—0,01 мм, чтобы общая его толщина не превышала 0,015 мм. При большей толщине в процессе последующей обработки (например, шлифовании) возможно образование заусенцев на боковых кромках изделий, а в дальнейшем, при гальваническом наращивании, —образование крупных дендритов.

Гальваническое наращивание меди ведут в сернокислом электролите, содержащем 200—250 г/л сернокислой меди и 50—75 г/л серной кислоты при плотности тока 0,8—1 А/дм2; время осаждения 50—60 мин.

В ряде случаев необходимо производить гальваническое наращивание серебра. Перед наращиванием поверхности изделий из минералокерамики эмальгамируют в растворе, содержащем 4—10 г/л двухлористой ртути и 10—20 г/л хлористого аммония, при 18—25° С в течение 3—5 с. Серебрение ведут в электролите, содержащем 35—40 г/л азотнокислого серебра и 40—70 г/л цианистого калия, при температуре электролита 18—25° С и плотности тока 0,1—0,2 А/дм2. Время выдержки зависит от требуемой толщины.

 

Литературный обзор

Электролиты на основе простых соединений проще и дешевле, но при получении качественных гальванических покрытий с мелкокристаллической структурой и равномерной толщиной на всех участках изделий сложной формы применяют электролиты на основе комплексных соединений или на основе простых солей с добавками поверхностно-активных веществ. Для сохранения постоянства состава электролита введение солей или других соединений осаждаемого металла осуществляется периодически.

Количественно гальванотехнические процессы регулируются по законам Фарадея с учётом побочных процессов, качественно — составом электролита, режимом электролиза, температурой и интенсивностью перемешивания.

Все электрохимические процессы получения гальванических покрытий проводят в гальванических ваннах, футерованных свинцом или винипластом, полипропиленом, или другого материала, в зависимости от размера ванны и агрессивности электролита. Ванны, для получения гальванических покрытий бывают стационарными, полуавтоматическими (изделия в такой ванне вращаются или перемещаются по кругу или подковообразно) или представляют собой целый комплекс, в котором автоматически производится загрузка, выгрузка и транспортировка изделий вдоль ряда отдельных ванн.

Прочность сцепления гальванических покрытий с основным изделием обеспечивается, прежде всего, тщательной подготовкой поверхности, очистка поверхности от окислов и жировых загрязнений путём механической пескоструйной обработки, и химической обработкой травлением или обезжириванием, удалением шероховатости шлифованием и полированием.

Покрытия применяемые в гальванике очень разнообразны. При выборе следует учитывать назначение и материал детали, условия эксплуатации покрываемого изделия, назначение и необходимые свойства покрытия, способ его нанесения, допустимость контактов сопрягаемых металлов и экономическую целесообразность применения гальванического покрытия. Гальванические покрытия могут обеспечивать повышенную коррозионную стойкость (оцинкованием, хромированием, лужением, свинцеванием), износостойкость трущихся поверхностей (хромированием, железнением), защитно-декоративную функцию отделки поверхности (меднением, никелированием, хромированием, серебрением, золочением, анодированием). Гальванические покрытия изделий из полимеров, оргстекла, пластика или композита применяются для придания эстетичного вида, увеличения прочности поверхности изделия, приданию деталям электопроводящих свойств.

Хромирование увеличивает твердость металлических изделий, сопротивление механическому износу и высоким температурам, придает декоративный вид и светоотражающие свойства. Сами по себе хромовые гальванические покрытия достаточно пористые, поэтому чаще для предотвращения коррозии на изделие наносят несколько слоев, например, медь-никель-хром или никель-медь-никель-хром. Аноды при хромировании используют свинцовые. Свойства хромовых гальванических покрытий сильно зависят от концентрации и температуры электролита, плотности тока. Например, при температуре электролита 35-55 ºС покрытие будет блестящим, при 55-80 ºС - молочным, ниже 35 ºС - матовым. Меняя состав электролитов, можно получить декоративное покрытие (от темно-голубого цвета до темно-синего и даже черного) или износостойкое для обработки деталей двигателей, редукторов и других механизмов.

Цинкование может быть щелочным, слабокислым, цианистым. Цинк хорошо сцепляется с поверхностью других металлов, а со временем на цинковом покрытии образуется тонкая пленка окислов, обладающая прекрасными защитными свойствами. Нанесение цинкового гальванического покрытия с использованием бесцветного и радужного хромирования обеспечивает изделиям прекрасный вид и защиту от различных видов коррозии и механических воздействий.

Кадмирование для защиты поверхности металлов все еще широко применяется, хотя в последнее время оно начинает заменяться более дешевым и доступным цинкованием. По стойкости к атмосферным и химическим факторам между этими металлами нет большой разницы. Для кадмирования изделий применяются, как правило, цианистые электролиты.

Меднение металлических изделий производят в декоративно-защитных целях, для улучшения приработки трущихся деталей, уплотнения зазоров, восстановления изношенных поверхностей и защиты инструмента от искрообразования, а также для создания на поверхности металла токопроводящего слоя с малым сопротивлением. При меднении используются кислые, цианистые или щелочные нецианистые электролиты.

Никелированию подвергаются преимущественно изделия из стали и сплавов, а также меди, латуни, цинка для защиты от коррозии, повышения износостойкости деталей, в защитно-декоративных целях, а также для формирования промежуточного слоя при многослойных покрытиях. Никелевые гальванические покрытия отличаются красивым внешним видом, стойкостью к атмосферным воздействиям, легкостью нанесения на металлические изделия. Для получения матовых и блестящих никелевых покрытий без дополнительной полировки используют разные гальванические ванны. Электролиты для никелирования бывают сернокислые матовые, сернокислые блестящие и редко применяемые в гальваностегии сульфаматные.

Железнение как гальваническое покрытие распространено очень мало. Главным образом оно используется в полиграфической промышленности для покрытия матриц, а в последнее время также при окончательной обработке деталей машин или при ремонте изношенных инструментов. Кроме того, этим способом можно приготовить особо чистое железо для физических и химических исследований. Основным элементом электролита является сернокислое или хлористое железо.

Латунирование – это нанесение на поверхность металлических (главным образом стальных) изделий слоя латуни толщиной в несколько мкм (примерный состав: 70 % меди и 30 % цинка). Применяется для защиты изделий от коррозии, для обеспечения прочного сцепления стальных и алюминиевых изделий с резиной при горячем прессовании, для создания промежуточного слоя при никелировании или лужении стальных деталей (что более эффективно, чем непосредственное покрытие никелем или оловом). Латунирование — один из способов повышения антифрикционных свойств титана и его сплавов.

Лужение приобретает в промышленности все большее значение, благодаря стойкости олова к коррозии. Применяется чаще всего к железным и стальным деталям.

Гальванические покрытия из драгоценных металлов и их сплавов широко применяются при заключительной обработке ювелирных изделий для придания им определенного цвета, тона и блеска, создания цветовой гармонии при изготовлении изделий с драгоценными камнями, коррозионной защиты, повышения прочности и твердости. При золочении из экономических соображений пользуются нерастворимыми (угольными, платиновыми или стальными) анодами. Наилучшими свойствами обладают гальванические покрытия из золота, серебра и их сплавов, полученные из цианистых электролитов, содержащих свободный цианистый калий. Однако при этом возникают проблемы с утилизацией промывных вод и отработанных электролитов, которые содержат свободные цианиды, не говоря уже про особые меры предосторожности в процессе получения самих гальванических покрытий. Покрытия, нанесенные с использованием нецианистых электролитов (гексаферроцианидных, роданидных, йодидных, пирофосфатных при серебрении и трилонатных, сульфитных, тиосульфатных, триполифосфатных при золочении) не требуют столь строгих мер по соблюдению экологической безопасности, но дают матовые гальванические поверхности и требуют дополнительной полировки, поэтому применяются на изделиях относительно простой конфигурации. В связи с этим сейчас в промышленности уделяют особое внимание разработке новых полностью бесцианистых электролитов для нанесения блестящих гальванических покрытий.

 

Цель и задачи исследования

Цель: изучение процесса нанесения гальванического покрытия. Данная цель определила следующие задачи исследования:

1. Изучить литературу и материалы интернет ресурсов по теме исследовательской работы.

2. Систематизировать полученные материалы.

3. Провести опыты с электролитическим осаждением (гальваникой) с целью проверки полученных теоретических данных.

 

Подготовка изделия.

Механическая обработка

Шлифование применяют для устранения царапин, забоин, рисок и других дефектов на поверхности деталей, а также для получения гладкой и ровной поверхности перед нанесением на нее защитно-декоративных покрытий.

Шлифование — механический процесс снятия тонкой стружки металла острыми режущими гранями мелких верен абразивных материалов.

Полирование — механический процесс получения блестящей (зеркальной) поверхности сглаживанием мельчайших неровностей предварительно шлифованной поверхности.

Шлифование и полирование крупных и средних деталей производят абразивными кругами и лентами; можно использовать и вибрационно-абразивное шлифование и полирование. Для мелких деталей эффективнее применять методы вибрационно-абразивной обработки и галтовки в барабанах с абразивными материалами. Шлифование и полирование кругами ведут на одношпиндельных или двухшпиндельных станках. Шлифовальные и полировальные круги изготовляют из войлока, сизаля, бязи, брезента, сукна, байки и других материалов, на рабочую поверхность которых наносят абразив, удерживаемый специальной связкой. При шлифовании деталей накатными войлочными или матерчатыми кругами, а также при полировании необходимо для более мягких металлов подбирать и более мягкие, т. е. эластичные, круги.

Для получения чисто отшлифованной поверхности рекомендуется при каждом последующем переходе применять круг более твердый, чем при предыдущем переходе. В зависимости от назначения круги различаются видом и сортом абразивного материала, твердостью, связкой. При выборе абразивного круга необходимо учитывать твердость обрабатываемого материала, площадь соприкосновения круга с деталью. Чем тверже обрабатываемый материал и больше площадь соприкосновения круга с деталью, тем мягче должен быть круг. Из-за высокой плотности войлочных кругов их целесообразно применять для шлифования деталей с острыми и прямыми углами, отверстиями, вырезами — там, где нужно сохранить поверхность ровной и не «заваливать» края детали.

Для шлифования деталей под защитно-декоративные покрытия наряду с войлочными широко применяют матерчатые круги. Они отличаются упругостью и эластичностью. Их используют при шлифовании как черных, так и цветных металлов. Благодаря эластичности они удобны для шлифования деталей сложного профиля. Применяемые на ряде заводов самоохлаждающиеся вентилируемые круги имеют стойкость значительно большую, чем обычные полировальные круги.

При полировании используют полировальные пасты. В их состав входят абразив и связующее вещество. В качестве абразива применяют окись железа, окись хрома, окись алюминия, венскую известь, а в качестве связующего вещества — стеарин, парафин, олеиновую кислоту, говяжье сало и др. Пасты могут быть твердыми и жидкими. Применение автоматической подачи паст увеличивает производительность процесса, создает удобство в работе и обеспечивает высокое качество обработки.

На ряде заводов в связи с внедрением высокопроизводительного полировального оборудования применяют непрерывные гибкие абразивные ленты и лепестковые круги, собранные из шлифовальных шкурок с различным зерном абразива.

Обработка абразивными лентами в сравнении со шлифованием войлочными кругами имеет следующие преимущества: поверхность соприкосновения ленты с деталью значительно больше, что способствует лучшему рассеянию теплоты; скорость движения ленты остается постоянной во все время шлифования; отпадает необходимость в балансировке рабочего инструмента; более оперативна переналадка станка; более безопасны условия труда.

В зависимости от состояния поверхности детали шлифование ведут в несколько переходов с постепенным уменьшением величины зерна абразива от первой операции к последней.

После того как шлифованием сглажены основные микрошероховатости поверхности, иногда перед декоративным полированием круг с мелким абразивом, который применялся на предыдущем переходе шлифования, слегка смазывают парафином, техническим салом или специальными засалочными пастами. Эта операция желательна в тех случаях, когда необходимо предохранить деталь от выкрашивания и задира при тонком шлифовании поверхности.

Режим шлифования определяется материалом обрабатываемых деталей, частотой вращения круга и его давлением на поверхность металла. При Шлифовании твердых материалов простой формы частота вращения круга больше, чем при обработке более мягких материалов и деталей сложной формы. При предварительном шлифовании, в отличие от тонкого, для снятия большего слоя металла увеличивают силу прижима деталей к вращающемуся кругу.

Галтовка (абразивная обработка в барабанах по ГОСТ 23505—79). Этот процесс есть разновидность шлифования и полирования, заключающийся в очистке и отделке поверхности мелких деталей насыпью для снятия заусенцев, окалины, неровностей и уменьшения шероховатости поверхности.

Галтовку осуществляют в аппаратах барабанного и колокольного типа, в которые загружают абразивные материалы и детали. При вращении барабана или колокола с выступающих частей поверхности деталей снимается тонкий слой металла в результате трения их между собой, а также с абразивными и полирующими материалами. Различают сухую (абразивную) галтовку и мокрую (жидкостно-абразивную) галтовку, которую в зависимости от применяемого размера абразива делят на подводное шлифование и подводное полирование.

Чаще всего для окончательной отделки винтов и болтов небольших размеров, поверхность которых должна быть блестящей, без заусенцев, применяют сухую галтовку. Ее осуществляют либо без абразива, либо с использованием тонкого абразива типа крокуса. Обработку изделий из мягких металлов и резьбовых изделий рекомендуется проводить в аппаратах колокольного типа, где они не испытывают сильных ударов.

При жидкостно-абразивной обработке детали обрабатываются абразивом и полирующими материалами в жидкой среде. В качестве абразива используют бой наждака, керамики, фарфора, корунда, кварцевый песок, стальную сечку, а для полирования — стальные шарики, дретесиые опилки, обрезки кожи, фетра и другие мягкие материалы. В качестве жидкой среды используют 2—3 %-ный раствор щелочи, мыльный, кислотный и другие растворы. Жидкостно-абразивную обработку обычно применяют перед нанесением покрытий, чтобы очистить детали от травильного шлама, а также с целью сглаживания поверхности [8, С.96].

Обработка щетками — процесс, при котором в результате воздействия концов проволок поверхность металла очищается от ржавчины, окалины, краски, образовавшегося шлама и Других загрязнений. Его производят не только с целью очистки поверхности, но и для нанесения на детали штрихового декоративного рисунка. С этой целью операцию производят либо до нанесения покрытия, либо после.

Обработку щетками осуществляют обычно на шлифовально-полировальных станках. Для изготовления щеток применяют стальную, латунную, медную, нейзильберную проволоку. При обработке мягких гальванических покрытий используют также волосяные, капроновые либо травяные щетки. При подборе проволоки для изготовления крацевальных щеток можно воспользоваться данными табл. 7, Прилож.2.

При декоративной обработке щетки обычно смачивают в содовом или мыльном растворе. Скорость вращения щеточных кругов может изменяться от 450 до 1800 об/мин.

Струйно-абразивная обработка. Этот вид подготовки поверхности перед нанесением металлических покрытий имеет разновидности: пескоструйная, дробеструйная и жидкостно-абразивная обработка. Он имеет весьма широкое применение, так как является одним из наиболее эффективных способов подготовки поверхности для всех видов покрытий, не требующих полированной поверхности.

Наряду с высокой скоростью и качеством очистки деталей от окалины и ржавчины струйная обработка создает поверхностный упрочняющий наклеп, который положительно сказывается на механических свойствах детали. В результате такой обработки с поверхности исчезают заусенцы, забоины, риски, т. е. те дефекты, которые отрицательно сказываются на коррозионной стойкости деталей с покрытиями, на качестве осаждаемых покрытий и на их декоративном, виде. Этот процесс широко применяют для создания равномерной матовой поверхности детали и повышения светопоглощающих характеристик деталей оптической аппаратуры.

 

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...