Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Радон применяется также при изучении диффузии и явлений переноса в твердых телах, при исследовании скорости движения и обнаружения утечек газов в трубопроводах.




Во всем мире прилагаются громадные усилия для решения проблемы прогноза землетрясений, но тем не менее мы часто оказываемся бессильны перед неожиданным натиском стихии земных недр. Поэтому не прекращаются поиски новых предвестников сейсмических событий. Исследования последних лет [5-7] привели к идее прогноза сейсмических событий на основе изучения процесса выделений (эксгаляции) газа радона из массива горных пород. Анализ этих данных возвращает нас к старой теории упругой отдачи Джильберта-Рейда (1911 год), согласно которой накопление энергии в массиве горных пород перед землетрясением и сброс этой энергии в процессе землетрясения происходят в областях, где эти породы испытывают упругую деформацию.

Изменения содержания радона перед землетрясением впервые были замечены в Советском Союзе, где десятилетнее возрастание количества радона, растворенного в воде глубоких скважин, сменилось резким его падением перед Ташкентским землетрясением 1966 года (магнитуда 5.3)

Способ прогноза землетрясений, заключающийся в проведении режимных наблюдений изменения концентрации радона в массиве горных пород, отличается тем, что производят бурение специальных наблюдательных скважин, глубина которых менее глубины уровня грунтовых вод и в каждой из этих скважин непрерывно регистрируют динамику выделения радона из массива горных пород и суммарное количество сейсмической энергии, поступившей в каждую наблюдательную скважину. И по серии наблюдений во времени выделяют зоны с последовательным уменьшением или увеличением выделения радона с учетом поступившей сейсмической энергии, указанные зоны наносят на карту исследуемого района и по площади зоны динамического уменьшения выделения радона судят о положении эпицентра и магнитуде ожидаемого землетрясения, а по динамике уменьшения и/или увеличения выделения радона в наблюдательных скважинах судят о времени ожидаемого сейсмического события.

 

РАДОН В УРАЛЬСКОМ РЕГИОНЕ

 

Практически самая высокая в России загрязненность воздуха связана не только с тем, что на Урале со времен заводчиков Демидовых сосредоточены крупнейшие промышленные предприятия страны. Почва и старые Уральские горы изобилуют разломами, которые излучают радон, проникающий в наши дома. По количеству точек, где это происходит, Свердловская область находится на втором месте в стране.

Но когда же так громко заговорили о проблеме радона у нас на Урале? В конце 80-х, когда появился первый меодический документ по контролю радона в жилищах. Затем вышло постановление екатеринбургской мерии о том, что во всем сдаваемом жилье должны проводиться измерения радона. А в 94 году начала реализовываться Федеральная целевая программа «Радон». В ней была и региональная часть, которая, в частности, касалась Свердловсой области.

Ранее финансирование ее, в частности из экологического Фонда, шло активнее, да и качественных измерений было больше. Институт промышленной экологии УрО РАН участвовал в этой программе и проводил в год несколько сот измерений. В итоге сейчас имеются материалы о проведении измерений более чем в трех тысячах жилищ Свердловской области.

На фоне карты Уральского региона достаточное количество населенных пунктов находится в местах с относительно высоким уровнем радоновой опасности. Грубо говоря территории Свердловской области разделили на 2 части. В первой уровень радоновой опасности относительно выше чем во второй, а в другой относительно ниже чем в первой. Доверять можно лишь реальным измерениям.

По данным полученным институтом промышленной экологии УрО РАН, высоким уровнем облучения радоном подвергается 50 тысяч человек.

В 1,1 процент жилищ Свердловской области объемная активность радона превышает гигиенический норматив для существующих зданий. Один процент соответствует, примерно 20 тысячам жилищ в Свердловской области.

радон физический химический экология

ПУТИ РЕШЕНИЯ РАДОНОВОЙ ПРОБЛЕМЫ

 

В настоящее время остаётся актуальной проблема облучения людей радиоактивным газом радоном. Ещё в XVI веке отмечена большая смертность горняков Чехии, Германии. В 50 – е годы ХХ века появились объяснения этому факту. Было доказано, что радиоактивный газ радон, присутствующий в шахтах урановых рудников, оказывает губительное действие на организм человека. Интересно проследить, как изменилось отношение к проблеме влияния радона в наши дни.

Анализ научно – популярных изданий показывает долю внутреннего облучения от различных источников радиации.

 

Таблица 1

Источники радиации. Среднегодовая эффективная доза облучения, мЗв
Естественные Искусственные источники, используемые в медицине Радиоактивные осадки Атомная энергия 2   0,4 0,02 0,001
Всего 2,4

 

Из таблицы следует, что 66% внутреннего облучения определяется земными радионуклидами. Согласно оценкам учёных радон и его дочерние продукты распада обеспечивают примерно ¾ годовой эффективной дозы облучения, которую получает население от земных источников радиации.

По оценкам учёных радон – 222 с точки зрения вклада в суммарную дозу облучения в 20 раз мощнее других изотопов. Этот изотоп изучается больше других и называется просто радоном. Основными источниками радона являются почва и строительные материалы.

Все строительные материалы, почва, земная кора содержат радионуклиды радия – 226 и тория – 232. В результате распада этих изотопов возникает радиоактивный газ – радон. Кроме этого при α – распадах образуются ядра, находящиеся в возбуждённом состоянии, которые переходя в основное состояние испускают γ – кванты. Эти γ – кванты формируют радиоактивный фон помещений, в которых мы находимся. Интересен тот факт, что радон, являясь инертным газом, не образует аэрозолей, т.е. не присоединяется к пылинкам, тяжёлым ионам и т.д. Из – за химической инертности и большого периода полураспада радон – 222 может мигрировать по трещинам, порам почвы и породы на большие расстояния, причём длительно (около 10 дней).

Долго вопрос о биологическом влиянии радона оставался открытым. Оказалось, что при распаде все три изотопа радона образуют дочерние продукты распада (ДПР). Они являются химически активными. Большая часть ДПР, присоединяя электроны, становятся ионами, легко присоединяются к аэрозолям воздуха, становясь его составной частью. Принцип регистрации радона в воздухе основан на регистрации ионов ДПР. Попадая в дыхательные пути ДПР радона, вызывают радиационные повреждения лёгких и бронхов.

Какими путями радон появляется в воздухе. Проанализировав данные можно выделить следующие источники атмосферного радона:

 

Таблица 2

Источники радона Мощность выделения 1012Бк/год
Выход из почвы Грунтовые воды Океан Фосфатные отходы Угольные отходы Сжигание угля Природный газ 740 105 185 105 111 104 740 102 740 33,3 370

 

Радон освобождается из почвы и воды повсюду, однако в разных точках земного шара его концентрация в наружном воздухе различна. Средний уровень концентрации радона в воздухе примерно равен 2 Бк/м3.

Оказалось, что основную часть дозы обусловленную радоном человек получает находясь в закрытом, непроветренном помещении. В зонах с умеренным климатом концентрация радона в закрытом помещении примерно в 8 раз выше, чем в наружном воздухе. Поэтому нам было интересно узнать, что является основным источником радона в доме. Анализ данных печати приведён в таблице:

 

Таблица 3

Источники радона в доме Доля от общего поступления, %
Почва и породы под зданием Внешний воздух Строительные материалы Вода Природный газ 70 13 7 5 4

 

Из приведённых данных следует, что объёмная активность радона в воздухе помещений формируется в основном из почвы. Концентрация радона в почве определяется содержанием в ней радионуклидов радия-226, тория-228, строением почвы и влажностью. Строение и структура земной коры определяет диффузионные процессы атомов радона, их миграционную способность. Миграция атомов радона увеличивается с увеличением влажности почвы. Эмиссия радона из почвы имеет сезонный характер.

Повышение температуры вызывает расширение пор в почве, а следовательно, увеличивает выделение радона. Кроме того, повышение температуры усиливает испарение воды, с которой в окружающее пространство выносится радиоактивный газ радон. Повышение атмосферного давления способствует проникновению воздуха вглубь почвы, концентрация радона при этом падает. Напротив, при понижении внешнего давления богатый радоном грунтовый газ устремляется к поверхности и концентрация радона в атмосфере увеличивается.

Важным фактором, уменьшающим поступление радона в помещение, является выбор территории для строительства. Кроме почвы и воздуха источником радона в доме являются строительные материалы. Испарение радона из гранул микрочастиц породы или стройматериала называется эксхаляцией. Эксхаляция радона из строительных материалов зависит от содержания в них радия, плотности, пористости материала, параметрами помещения, толщины стен, вентиляции помещений. Объёмная активность радона в воздухе помещения всегда выше, чем в атмосферном воздухе. Для характеристики строительных материалов вводится понятие длины диффузии радона в веществе.

Из стены выходят только те атомы радона, которые находятся в порах материала на глубине не большей, чем длина диффузии. На схеме представлены пути проникновения в помещение:

 

 

· Через щели в монолитных полах;

· Через монтажные соединения;

· Через трещины в стенах;

· Через промежутки вокруг труб;

· Через полости стен.

По оценкам исследований скорость поступления радона в одноэтажный дом составляет 20 Бк/м3час, при этом вклад бетона и других стройматериалов в эту дозу составляет всего 2 Бк/м3час. Содержание радиоактивного газа радона в воздухе помещений определяется содержанием в стройматериалах радия и тория. Применение в производстве стройматериалов с использованием безотходных технологий сказывается на объёмной активности радона в помещении. Использование кальций – силикатных шлаков, полученных при переработке фосфатных руд, пустых пород из отвалов обогатительных фабрик уменьшает загрязнение окружающей среды, удешевляет производство стройматериалов, человека радоном. Особенно высокой удельной активностью обладают блоки из фосфогинса, квасцовых глинистых сланцев. С 1980 г. производство такого газобетона прекращено из – за высокой концентрации радия и тория.

При оценках радонового риска всегда надо помнить, что вклад собственно радона в облучение относительно невелик. При радиоактивном равновесии между радоном и его дочерних продуктов распада(ДПР) этот вклад не превышает 2%. Поэтому доза облучения легких от ДПР радона определяется величиной, эквивалентной равновесной объемной активности (ЭРОА) радона:

 

СRn экв= nRnFRn= 0,1046nRaA+ 0,5161nRaB+ 0,3793nRaC,

 

где nRn, nRaA, nRaB, nRaC– объемные активности радона и его ДПР Бк/м3, соответственно; FRn –коэффициент равновесия, который определяется как отношение эквивалентной равновесной объемной активности радона в воздухе к реальной объемной активности радона. На практике всегда FRn< 1 (0,4–0,5).

Нормативы ЭРОА радона в воздухе жилых зданий,Бк/м:

 

Ещё одним источником радона в помещениях является природный газ. При сгорании газа радон накапливается в кухне, котельных, прачечных и распространяются по зданию. Поэтому очень важно в местах сгорания природного газа иметь вытяжные шкафы.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...