Геометрическое соотношение размеров червячной некорригированной передачи с архимедовым червяком
Стр 1 из 5Следующая ⇒ Рис. 4
Витки ее червяка расположены на глобоидной (торовой) поверхности. Эта передача появилась сравнительно недавно, имеет повышенную нагрузочную способность (в 1,5—2 раза больше, чем у обычных червячных передач), так как линия контакта в глобоидных передачах располагается благоприятно, что улучшает условия для образования масляных клиньев, и в зацеплении находится большее число зубьев колеса и витков червяка. Глобоидные передачи требуют повышенной точности изготовления и монтажа, искусственного охлаждения. Эти передачи применяют реже, чем цилиндрические.
Червячные передачи, как и зубчатые, могут быть корригированными. Корригирование червячных передач осуществляется так же, как и зубчатых, т. е. радиальным смещением инструмента относительно оси заготовки при нарезании. Корригирование передачи осуществляют только за счет колеса. Корригированные колеса нарезают на тех же станках и тем же инструментом, что и некорригированные. Корригирование в основном применяют для вписывания передачи в заданное межосевое расстояние. В машиностроении преимущественно применяют некорригированные червячные передачи.
Материалы червячной передачи. Материалы в червячной передаче должны иметь в сочетании низкий коэффициент трения, обладать повышенной износостойкостью и пониженной склонностью к заеданию. Обычно это разнородные материалы. Червяки изготовляют в основном из сталей марок 40, 45, 50 (реже из сталей 35, Ст5) с закалкой до HRC 45-55; 15Х, 20Х, 40Х, 40ХН, 12ХНЗ, 18ХГТ с цементацией и закалкой до HRC58—63. Червячные колеса (или их венцы) изготовляют только из антифрикционных сплавов. При скоростях скольжения до 2 м/с и больших диаметрах колес для их изготовления можно использовать чугуны марок СЧ15, СЧ20, СЧ25; до 6 м/с — применяют алюминиево-железистые бронзы БрА9Ж4 (при этом червяк должен иметь твердость не менее HRC45), до 25 м/с и длительной работе без перерыва применяют оловяниетую бронзу БрОЮФ, оловянно-никелевую бронзу БрОНФ.
Для получения высоких качественных показателей передачи применяют закалку до твердости HRCЭ, шлифование и полирование витков червяка. В старых редукторах нашли применение эвольвентные червяки типа ZI, а перспективными являются нелинейчатые: образованные конусом типа ZK или тором типа ZT (по изобретению проф. Г. Ниманна). Рабочие поверхности витков нелинейчатых червяков шлифуют с высокой точностью конусным или тороидным кругом. Передачи с нелинейчатыми червяками характиризует повышенная нагрузочная способность. Термообработку – улучшение применяют для передачи малой мощности до 1,1 кВт. Таким образом, для силовых передач следует применять эвольвентные нелинейчатые червяки. Зубчатые венцы червячных колес изготовляют преимущественно из бронзы, реже из латуни или чугуна, причем выбор марки материала зависит от скорости скольжения . Материалы венцов червячных колес по мере убывания антизадирных и антифрикционных свойств и рекомендуемым для применения скоростям скольжения можно условно свести к трем группам. Группа I. Оловянные бронзы (марок БрО10Ф1, БрО10Н1Ф1 и др.), применяют при высоких скоростях скольжения ( = 5...25 м/с). Обладают хорошими антизадирными свойствами, но имеют невысокую прочность. Группа II. Безоловянные бронзы и латуни применяют при средних скоростях скольжения ( до 3...5 м/с). Чаще других применяют алюминиевую бронзу марки БрА9ЖЗЛ. Эта бронза имеет высокую механическую прочность, но обладает пониженными антизадирными свойствами, поэтому ее применяют в паре с закаленными (Н > 45 HRCэ) шлифованными и полированными червяками.
Группа Ш. Серые чугуны марок СЧ15, СЧ20 применяют при малых скоростях скольжения ( < 2...3 м/с). При выборе материала колеса предварительно определяют ожидаемую скорость скольжения, м/с: где п1 — мин-1; Т2 — в Нм. Механические характеристики для наиболее распространенных материалов венцов червячных колес приведены в табл. 1. Практика показала, что большее сопротивление изнашиванию оказывают зубья венцов, отлитых центробежным способом.
Таблица 1. Механические характеристики материалов венцов червячных колес
Примечание. — предел текучести; — временное сопротивление; — предел прочности при изгибе.
Допускаемые контактные напряжения для оловянных бронз: при шлифованном и полированном червяке с твердостью > 45HRC; при несоблюдении указанных условий для червяка. Для бронзы БрАЖ9-4 (МПа) – при шлифованном и полированном червяке с твердостью > 45HRC, – коэффициент, учитывающий скорость скольжения выбирают по таблице 2. Таблица 2
Эти зависимости используются при длительном сроке службы и нагрузке, близкой к постоянной. Допускаемые напряжения изгиба для всех марок бронз Для проверки червячных передач на прочность при кратковременных перегрузках, принимают следующие предельные допускаемые напряжения: оловянные бронзы ; бронза БрАЖ9-4 ; для бронзы всех марок.
Конструктивные элементы червячной передачи В большинстве случаев червяк изготовляют как одно целое с валом. При конструировании червяка желательно иметь свободный выход инструмента при нарезании и шлифовании витков (шероховатость рабочих поверхностей витков Rа < 0,63 мкм). С целью экономии бронзы зубчатый венец червячного колеса изготовляют отдельно от чугунного или стального центра. В зависимости от способа соединения венца с центром различают следующие конструкции червячных колес:
1. С напрессованным венцом — бронзовый венец насажен на стальной центр с натягом. Такую конструкцию применяют при небольших диаметрах колес в мелкосерийном производстве. 2. С привернутым венцом — бронзовый венец с фланцем крепят болтами к центру. Фланец выполняют симметрично относительно венца для уменьшения деформаций зубьев. Эту конструкцию применяют при больших диаметрах колес ( мм). 3. С венцом, отлитым на стальном центре — стальной центр вставляют в металлическую форму (кокиль), в которую заливают бронзу для получения венца. Эту конструкцию применяют в серийном и массовом производстве. Крепление венца к ступице должно обеспечивать фиксацию как от проворота (осевая сила червяка = окружной силе колеса), так и от осевого "снятия" венца (окружная сила червяка = осевой силе колеса). Во всех рассмотренных конструкциях чистовое обтачивание заготовки колеса и нарезание зубьев производят после закрепления венца на центре. Центр может состоять из диска и ступицы, размеры их элементов определяют по соотношениям, рекомендуемым для цилиндрических зубчатых колес. Червячное зацепление чувствительно к осевому смешению колеса. Поэтому в червячных передачах предусматривают регулирование положения средней плоскости венца колеса относительно оси червяка. Регулирование выполняют осевым перемещением вала с закрепленным на нем колесом. Перемещение вала осуществляют постановкой под фланцы привертных крышек подшипников набора тонких ( мм) металлических прокладок или применением винтов, воздействующих на подшипники через нажимные шайбы.
Передаточное число червячной передачи и определяют из условия, что за каждый оборот червяка колесо поворачивается на число зубьев, равное числу витков червяка, , (1) где z2 — число зубьев колеса червячной передачи; z1 — число витков червяка. Достоинства червячных передач: - возможность получения больших передаточных чисел (одной парой — от 8 до 100, а в кинематических передачах — до 1000);
- плавность и бесшумность работы; - возможность выполнения самотормозящей передачи (ручные грузоподъемные тали); - демпфирующие свойства снижают уровень вибрации машин; - возможность получения точных и малых перемещений; - компактность и сравнительно небольшая масса конструкции передачи. Недостатки: - в отличие от эвольвентных зацеплений, где преобладает контактное качение, виток червяка скользит по зубу колеса. Следовательно, червячные передачи имеют "по определению" один фундаментальный недостаток: высокое трение в зацеплении; - сравнительно невысокий КПД (0,7—0,92), в самотормозящих передачах — до 0,5 вследствие больших потерь мощности на трение в зацеплении; - сильный нагрев передачи при длительной работе вследствие потерь мощности на трение, который вызывает значительное выделение тепла, которое необходимо отводить от стенок корпуса. Это обстоятельство ограничивает мощность практически применяемых передач пределом 10-20 кВт, зато для малых мощностей эти передачи нашли самое широкое применение; - необходимость применения для колеса дорогих антифрикционных материалов; - повышенное изнашивание и заедание; - необходимость регулировки зацепления. Кроме того, помимо достоинств и недостатков, червячные передачи имеют важное свойство: движение передаётся только от червяка к колесу, а не наоборот. Никакой вращающий момент, приложенный к колесу, не заставит вращаться червяк. Именно поэтому червячные передачи находят применение в подъёмных механизмах, например в лифтах. Там электродвигатель соединён с червяком, а трос пассажирской кабины намотан на вал червячного колеса во избежание самопроизвольного опускания или падения. Это свойство не надо путать с реверсивностью механизма. Ведь направление вращения червяка может быть любым, приводя либо к подъёму, либо к спуску той же лифтовой кабины. Червячные передачи применяют в механизмах деления и подачи зуборезных станков, продольно-фрезерных станков, глубоко расточных станков, грузоподъемных и тяговых лебедках, талях, механизмах подъема грузов, стрел и поворота автомобильных и железнодорожных кранов, экскаваторах, лифтах, троллейбусах и других машинах. Червячные передачи во избежание их перегрева предпочтительно использовать в приводах периодического, а не непрерывного действия.
Геометрическое соотношение размеров червячной некорригированной передачи с архимедовым червяком В червячной передаче в качестве расчетного модуля принимают осевой модуль червяка т, равный окружному модулю червячного колеса . Значения модуля т червячных передач стандартизированы (табл. 3).
Таблица 3.Значения модуля т и коэффициента диаметра червяка q
В цилиндрических червячных передачах с архимедовыми червяками шаг червяка р и шаг зубьев червячного колеса равны между собой (рис. 5): . (2) Рис. 5. Геометрические параметры червячной передачи
Угол (рис. 6), образованный винтовой линией по делительному цилиндру червяка с плоскостью, перпендикулярной к его оси, называют углом подъема витка червяка на делительном цилиндре: (3) или где — число витков червяка; — ход винтовой линии червяка. В червячных передачах вводят q — коэффициент диаметра червяка (отношение делительного диаметра червяка d1 к его расчетному модулю т). Принимают (4) Рис.6. Схема образования винтовой линии червяка
Для сокращения числа размеров фрез, требуемых для нарезания червячных колес, рекомендуется придерживаться значений q, предусмотренных стандартом на червячные передачи (см. табл. 1). Некоторые значения угла подъема витка червяка: 3°34'35"; 4°05'08";4°45'49"; 5°42'38"; 6°20'25"; 7°07'30"; 11°18'36"; 12°31'44"; 14°02'10"; 14°55'53"; 15°56'43"; 18°25'06"; 21°48'05"; 23°57'45"; 26°33'54"; 28°04'21". Геометрические параметры червяка и червячного колеса (см. рис. 5) некорригированной червячной передачи. Высота витка ; высота зуба червячного колеса ; высота головки винта ; высота головки зуба ; высота ножки витка ; высота ножки зуба колеса ; расчетная толщина витка ; радиальный зазор . Делительные диаметры: червяка ; червячного колеса Диаметры вершин: витков червяка ; зубьев червячного колеса . Диаметры впадин: червяка ; червячного колеса . Межосевое расстояние . Условный угол обхвата червяка венцом 25 (см. рис. 5) определяется точками пересечения дуги окружности диаметром с контуром венца; Конструктивные элементы передачи: длину нарезной части червяка , ширину венца колеса и наружный диаметр колеса определяют в зависимости от числа витков червяка , модуля т и числа зубьев колеса по соотношениям, приведенным в табл. 4. Таблица 4. Формулы для расчета конструктивных элементов червячной передачи
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|