Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Непрерывность функции и точки разрыва.




Проверить непрерывность функции f (x) на заданном промежутке [ x 1, x 2] можно с помощью команды iscont(f,x=x1..x2). Если функция f непрерывна на этом интервале, то в поле вывода появится ответ true – (истина); если функция f не является непрерывной на этом интервале, то в поле вывода появится ответ false – (ложь). В частности, если задать интервал x=-infinity..+infinity, то функция f будет проверяться на всей числовой оси. В этом случае, если будет получен ответ true, то можно сказать, что функция определена и непрерывна на всей числовой оси. В противном случае следует искать точки разрыва. Это можно сделать двумя способами:

1) с помощью команды discont(f,x), где f – функция, исследуемая на непрерывность, x – переменная. Эта команда пригодна для нахождения точки разрыва первого и второго родов.

2) с помощью команды singular(f,x), где f – функция, x – переменная. Эта команда годится для нахождения точек разрыва второго рода как для вещественных значений переменной, так и для комплексных.

Перед использованием этих команд их следует обязательно загрузить из стандартной библиотеки readlib(name), где name – имя любой из указанных выше команд.

Обе эти команды выдают результаты в виде перечисления точек разрыва в фигурных скобках. Тип такой записи называется set. Для того, чтобы в дальнейшем можно было использовать полученные значения точек разрыва, следует из типа set с помощью команды convert перевести их в обычный числовой тип.

 

Задание 4.1.

1. Найдите точки разрыва функции

> readlib(iscont): readlib(discont):

> iscont(exp(1/(x+3)),x=-infinity..+infinity);

false

Это означает, что функция не является непрерывной. Поэтому следует найти точки разрыва с помощью команды:

> discont(exp(1/(x+3)),x);

{-3}

Ответ наберите в текстовом режиме в новой строке:

“Точка разрыва x =-3.”

2. Найти точки разрыва функции

> readlib(singular):

> iscont(tan(x/(2-x)),x=-infinity..infinity);

false

> singular(tan(x/(2-x)),x);

{ x =2},{ x =2 }

Здесь _ N – целые числа. Ответ наберите в текстовом режиме в новой строке:

“Точки разрыва: x =2 и x =2p(2 n +1)/(p(2 n +1)-2).”

 

Поделиться:





Читайте также:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...