Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Активная, реактивная и полная мощности цепи




Умножив стороны треугольников напряжений (см. векторные диаграммы рис. 2.9, б, 2.10, б, 2.11, б) на ток I, получим треугольники мощностей.

Стороны треугольников мощностей соответственно означают:

Р = UrI = I2r — активная мощность цепи, Вт, кВт (рис 2.9, г, 2.10, г, 2.11,г и ж);

QL = ULI = I2xL —реактивная индуктивная мощность цепи, обусловленная энергией магнитного поля, вар, квар (рис. 2.9, г);

QС = UСI = I2хС — реактивная емкостная мощность цепи, обусловленная энергией электрического поля, вар, квар (рис. 2.10, г);

Q = QL - QС = I2x — реактивная мощность цепи, вар, квар (рис 2.11, г и ж), это та мощность, которой приемник обменивается с сетью;

S = UI = I2z — полная мощность цепи. В • А, кВ • А (рис. 2.9, г, 2.10, г, 2.11, г и ж);

cos φ = r/z = P/S—коэффициент мощности цепи (рис. 2.9, г, 2.10, г, 2.11, г и ж).

Из треугольников мощностей можно установить следующие связи между Р, Q, S и cos φ:

P = S cos φ = UI cos φ;

Q = S sin φ = UI sin φ;

За единицу активной мощности принят ватт (Вт) или киловатт (кВт), реактивной мощности — вольтампер реактивный (вар) или киловольтампер реактивный (квар), полной мощности — вольтампер (ВА) или киловольтампер (кВ•А).

Реактивные (индуктивная, емкостная) мощности, обусловленные соответственно энергией магнитного поля индуктивности и электрического поля емкости, не совершают никакой полезной paботы, однако они оказывают существенное влияние на режим работы электрической цепи. Циркулируя по проводам трансформаторов, генераторов, двигателей, линий передач, они нагревают их. Поэтому расчет проводов и других элементов устройств переменного тока производят, исходя из полной мощности S, которая учитывает активную и реактивную мощности.

Рис. 2.13. Схема включения приборов для измерения активной, реактивной и полной мощностей цепи, а также ее параметров

 

Коэффициент мощности имеет большое практическое значение: он показывает, какая часть полной мощности является активной мощностью. Полная мощность и коэффициент мощности наряду с другими параметрами являются расчетными величинами и в конечном счете определяют габаритные размеры трансформаторов, генераторов, двигателей и других электротехнических устройств.

Измерение активной, реактивной, полной мощностей и cos φ, а также параметров цепи, например r и L, можно произвести с помощью ваттметра, амперметра и вольтметра, включенных в цепь по схеме, изображенной на рис. 2.13.

Ваттметр измеряет активную мощность Р цепи. Полная мощность цепи равна произведению показаний вольтметра и амперметра.

Активное сопротивление находят из формулы

Р = I2r,

откуда

r = P/I2.

Полное сопротивление цепи

z = U/I.

Индуктивное сопротивление

Индуктивность L определяют из формулы

xL = 2πfL,

откуда

Пример 2.1. Приборы, включенные в цепь рис 2.13, показывают Р = 500 Вт, I = 5 А, U= 400 В.

Определить активное сопротивление r и индуктивность цепи L, если частота сети f = 50Гц.

Решение. Активное сопротивление цепи

r = P/I2 = 500/52 = 20 Ом.

Индуктивное сопротивление цепи

Индуктивность цепи

Пример 2.2. Определить ток, полную, активную и реактивную мощности, а также напряжения на отдельных участках цепи, изображенной на рис. 2.11, а. если r = 40 Ом. L = 0,382 Гн, С = 35,5 мкФ, U = 220 В, частота сети f = 50 Гц.

Решение. Индуктивное сопротивление цепи

xL = 2πfL = 2 • 3,14 • 50 • 0,382 = 120 Ом.

Емкостное сопротивление цепи

Полное сопротивление цепи

Ток в цепи

I = U/z = 220/50 = 4,4 А.

Коэффициент мощности цепи

cos φ = r/z = 40/50 = 0,8.

Полная, активная и реактивная мощности:

S = UI = I2z = 220•4,4 = 4,42 • 50 = 970 В • А.

Р = S cos φ = I2r = 970•0,8 = 4,42• 40 = 775 Вт;

Q = S sin φ = I2(xL - xС) = 970 • 0,56 = 4,42(120 - 90) = 580 вар.

Напряжения на отдельных участках цепи;

Ur = Ir = 4,4 • 40 = 176 В,

UL = IxL = 4,4 • 120 = 528 В;

UC = IхC = 4,4 • 90 = 396 В.

Пример 2.3. Определить характер нагрузки, полную, активную и реактивную мощности цепи, в которой мгновенные значения напряжения и тока составляют

u = 282 sin (ωt + 60°),

i = 141 sin (ωt + 30°).

Решение. Угол начальной фазы напряжения (ψ1 =60°) больше, чем тока (ψ2 = 30°), поэтому напряжение опережает по фазе ток на угол φ = ψ1 - ψ2 = 60 - 30 = 30° и нагрузка имеет активно-индуктивный характер.

Полная мощность цепи

Активная мощность цепи

Р = S cos φ = 20 000 cos 30°= 20 000 ( /2) - 17 300 Вт

Реактивная мощность цепи

Q = S sin φ = 20 000 sin 30° = 20000 • 0,5 = 10 000 вар.

 

 

РЕЗОНАНС НАПРЯЖЕНИЙ

Известно, что в механической системе резонанс наступает при равенстве собственной частоты колебаний системы и частоты колебаний возмущающей силы, действующей на систему. Колебания механической системы, например колебания маятника, сопровождаются периодическим переходом кинетической энергии в потенциальную и наоборот. При резонансе механической системы малые возмущающие силы могут вызывать большие колебания системы, например большую амплитуду колебаний маятника.

В цепях переменного тока, где есть индуктивность и емкость, могут возникнуть явления резонанса, которые аналогичны явлению резонанса в механической системе. Однако полная аналогия - равенство собственной частоты колебаний электрического контура частоте возмущающей силы (частоте напряжения сети) — возможна не во всех случаях.

В общем случае под резонансом электрической цепи понимают такое состояние цепи, когда ток и напряжение совпадают по фазе, и, следовательно, эквивалентная схема цепи представляет собой активное сопротивление. Такое состояние цепи имеет место при определенном соотношении ее параметров r, L, С, когда резонансная частота цепи равна частоте приложенного к ней напряжения.

Резонанс в электрической цепи сопровождается периодическим переходом энергии электрического поля емкости в энергию магнитного поля индуктивности и наоборот.

При резонансе в электрической цепи малые напряжения, приложенные к цепи, могут вызвать значительные токи и напряжения на отдельных ее участках. В цепи, где r, L, С соединены последовательно, может возникнуть резонанс напряжений, а в цепи, где r, L, С соединены параллельно,— резонанс токов.

Рассмотрим явление резонанса напряжений на примере цепи рис. 2.11, а.

Как отмечалось, при резонансе ток и напряжение совпадают по фазе, т. е. угол φ = 0. и полное сопротивление цепи равно ее активному сопротивлению.

Это равенство, очевидно, будет иметь место, если xL = хС, т. е. реактивное сопротивление цепи равно нулю:

x = xL — xС = 0.

Выразив xL и xС соответственно через L, С и f, получим

откуда

где f — частота напряжения, подведенного к контуру; fрез — резонансная частота.

Таким образом, при xL = xС в цепи возникает резонанс напряжений, так как резонансная частота равна частоте напряжения, подведенного к цепи.

Из выражения закона Ома для последовательной цепи

Рис. 2.14. Векторная диаграмма (а) и графики мгновенных значений и, i, р (б) цепи рис. 2.11, а при резонансе напряжений

 

вытекает, что ток в цепи при резонансе равен напряжению, деленному на активное сопротивление:

I = U/r.

Ток в цепи может оказаться значительно больше тока, который был бы при отсутствии резонанса. При резонансе напряжение на индуктивности равно напряжению на емкости:

IxL = IxС = UL = UC.

При больших значениях xL и хC относительно r эти напряжения могут во много раз превышать напряжение сети. Резонанс в цепи при последовательном соединении потребителей носит название резонанса напряжений.

Напряжение на активном сопротивлении при резонансе равно напряжению, приложенному к цепи:

Ur = Ir = U.

На рис. 2.14, а изображена векторная диаграмма цепи рис. 2.11, а при резонансе напряжений Диаграмма подтверждает тот факт, что ток совпадает по фазе с напряжением сети и что напряжение на активном сопротивлении равно напряжению сети. Реактивная мощность при резонансе равна нулю:

Q = QL - QC = ULI - UCI = 0.

так как UL = UC.

Полная мощность равна активной мощности;

так как реактивная мощность равна нулю. Коэффициент мощности равен единице:

cos φ = P/S = r/z = 1.

Поскольку резонанс напряжений возникает, когда индуктивное сопротивление последовательной цепи равно емкостному, а их значения определяются соответственно индуктивностью, емкостью цепи и частотой сети,

,

Резонанс может быть получен или путем подбора параметров цепи при заданной частоте сети, или путем подбора частоты сети при заданных параметрах цепи.

На рис. 2.14, б изображены графики мгновенных значений тока i, напряжения и сети и напряжений иL, иC, иr на отдельных участках, а также активной р = iur и реактивной pL= iиL,

pС = iиС мощностей за период для цепи рис. 2.11. а при резонансе напряжений. С помощью этих графиков можно проследить энергетическне процессы, происходящие в цепи при резонансе напряжений.

Активная мощность р все время положительна, она поступает из сети к активному сопротивлению и выделяется в нем в виде тепла. Мощности pL и рС знакопеременные, и, как видно из графика, их средние значения равны нулю.

В момент времени t = 0 (точка I на рис. 2.14, б) ток в цепи i = 0 и энергия магнитного поля

WL = 0. Напряжение на емкости равно амплитудному значению UтС, конденсатор заряжен и энергия его электрического поля

В момент времени t = 0 (точка I на рис. 2.14, б) ток в цепи i = 0 и энергия магнитного поля

WL = 0. Напряжение на емкости равно амплитудному значению U тС, конденсатор заряжен и энергия его электрического поля

В первую четверть периода, в интервале времени между точками 1 и 2, напряжение на емкости и, следовательно, энергия электрического поля убывают. Ток в цепи и энергия магнитного поля возрастают.

В конце первой четверти периода (точка 2) иС = 0, WС = 0. i = Im, WL = I2mL/2.

Таким образом, в первую четверть периода энергия электрического поля переходит в энергию магнитного поля.

Так как площади pС(t) и pL(t), выражающие запас энергии соответственно в электрическом и магнитном полях, одинаковы, вся энергия электрического поля конденсатора переходит в энергию магнитного поля индуктивности. Во вторую четверть периода, в интервале между точками 2 и 3, энергия магнитного поля переходит в энергию электрического поля.

Рис. 2.15. Графики зависимости I, r, хC, хL, Ur, UL, UC от частоты цепи, изображенной на рис 2.11, а

 

Аналогичные процессы происходят и в последующие четверти периода.

Таким образом, при резонансе реактивная энергия циркулирует внутри контура от индуктивности к емкости и обратно. Обмена реактивной энергией между источниками и цепью не происходит. Ток в проводниках, соединяющих источник с цепью, обусловлен только активной мощностью.

Для анализа цепей иногда используют частотный метод, позволяющий выяснить зависимость параметров цепи и других величин oт частоты.

На рис 2.15 изображены графики зависимости Ur, UC, UL, I, хC, хL, от частоты при неизменном напряжении сети.

При f = 0 сопротивления xL = 2πfL = 0,

хC = 1/2πfC = ∞, ток I = 0, напряжения Ur = Ir = 0,

UL = IxL= 0, UC = U.

При f = fpез хL = хC, I = U/r, UL = UC, Ur = U. При f→ ∞ xL→∞, хC→ 0, Ur → 0, UC → 0, UL → U.

В интервале частот от f = 0 до f = fpез нагрузка имеет активно-емкостный характер, ток опережает по фазе напряжение сети. В интервале частот f = fpез до f→ ∞ нагрузка носит активно-индуктивный характер, ток отстает по фазе от напряжения сети.

Наибольшее значение напряжения на емкости получается при частоте, несколько меньшей резонансной, на индуктивности - при частоте, несколько большей резонансной.

Явления резонанса широко используются в радиоэлектронных устройствах и в заводских промышленных установках.

Пример 2.4. Определить частоту сети, при которой в цепи рис. 2.11, а возникает резонанс напряжений. Определить также, во сколько раз напряжение на индуктивности больше напряжения сети при резонансе, если цепь имеет следующие параметры:

r = 20 Ом, L = 0,1 Гн, С = 5 мкф.

Решение. Резонансная частота

Индуктивное сопротивление цепи при резонансе

xL = 2πfpезL - 6,28 • 224 • 0,l = 140 Ом.

Напряжение на индуктивности при резонансе

,

Напряжение на индуктивности при резонансе в 7 раз больше напряжения сети.

 

РАЗВЕТВЛЕННЫЕ ЦЕПИ

Параллельное соединение приемников. Вначале рассмотрим графоаналитический метод расчета цепи с параллельным соединением потребителей (рис. 2.16, а). Для такой цепи характерно то, что напряжения на каждой ветви одинаковы, общий ток равен сумме токов ветвей.

Ток в каждой ветви определяется по закону Ома:

; ;

Угол сдвига φ между током каждой ветви и напряжением определяют с помощью cos φ:

; ;

 

Рис. 2.16. Цепь с параллельным соединением потребителей (а) и ее векторная диаграмма (б)

 

Общий ток в цепи, как следует из первого закона Кирхгофа, равен геометрической сумме токов всех ветвей:

Ī = Ī1 + Ī2 + Ī3.

Значение общего тока определяют графически по векторной диаграмме рис. 2.16, б.

Активная мощность цепи равна арифметической сумме активных мощностей всех ветвей:

Р = Р1 + P2 + P3.

Реактивная мощность цепи равна алгебраической сумме реактивных мощностей всех ветвей:

причем реактивную мощность ветви с индуктивностью берут со знаком плюс, ветви с емкостью — со знаком минус. Для цепи рис. 2.16 реактивная мощность равна

Q = QL1 - QC2 + QL3 - QC3.

Полная мощность цепи

Угол сдвига φ между общим током и напряжением определяют из векторной диаграммы или из выражения:

 

cos φ = P/S.

Графоаналитический метод не удобен для расчета разветвленных цепей: он отличается громоздкостью и невысокой степенью точности.

Для анализа и расчета разветвленных цепей переменного тока используют проводимости, с помощью которых разветвленную цепь можно преобразовать в простейшую цепь и аналитически рассчитать токи и напряжения всех ее участков.

В цепях постоянного тока проводимостью называется величина, обратная сопротивлению участка цепи:

g = 1/r

и ток в цепи выражается как произведение напряжения на проводимость:

I = Ug.

Рис. 2.17. Электрическая цепь (а), ее векторная диаграмма (б) и эквивалентная схема (в); векторная диаграмма цепи при резонансе

 

В цепях переменного тока существуют три проводимости — полная, активная и реактивная, причем только полная проводимость является величиной, обратной полному сопротивлению последовательного участка цепи.

Выражения проводимостей в цепях переменного тока можно получить следующим образом.

Ток в каждом неразветвленном участке цепи раскладывают на две составляющие, одна из которых есть проекция на вектор напряжения (активная составляющая тока Ia), а другая - на линию, перпендикулярную вектору напряжения (реактивная составляющая тока Iр).

Активная составляющая тока определяет активную мощность

P = UI cos φ = UIa;

реактивная составляющая тока - реактивную мощность

Q = UI sin φ = UIр.

Из векторной диаграммы цепи рис. 2.17, а, изображенной на рис. 2.17, б, следует, что активная составляющая тока I1 равна

Величина

g1 = r1/z12

называется активной проводимостью ветви. Реактивная составляющая тока I1 равна

Величина

b1 = xL/z12 = bL1

называется реактивной проводимостью ветви цепи с индуктивностью и в общем случае обозначается bL.

Аналогично определяют активную g2 и реактивную b2 проводимости второй ветви цепи:

I2а = I2cos φ2 = U/z2 • r2/z2 = Ug2; g2 =r2 /z22;

I2p = I2 sin φ2 = U/z2• xC /z2 = Ub2; b2 = bC2 = xC2 /z22.

Реактивная проводимость ветви с емкостью в общем случае обозначается bC.

 

Вектор тока первой ветви равен геометрической сумме векторов активной и реактивной составляющих тока

Ī1 = Ī + Ī,

а значение тока

Выразив составляющие тока через напряжение и проводимости, получим

где — полная проводимость ветви.

Аналогично определяют и полную проводимость второй ветви:

Эквивалентные активную, реактивную и полную проводимости цепи получают следующим образом.

Вектор общего тока цепи равен геометрической сумме векторов токов Ī1 и Ī2:

Ī = Ī1 + Ī2

и может быть выражен через активную и реактивную составляющие тока и эквивалентные проводимости всей цепи:

Ī = Īа + Īр = Ūgэ + Ūbэ = Uуэ = U/zэ .

Активная составляющая общего тока (см. рис. 2.17, б) равна арифметической сумме активных составляющих токов ветвей:

Iа = I1а + I2а = Ug1 + Ug2 = U(g1 + g2) = Ugэ. (2.24)

а реактивная составляющая - арифметической разности реактивных составляющих этих токов:

Iр = I1р + I2р = UbL1 - UbC2 = U (bL1- bC2)= Ubэ. (2.24)

Рис. 2.18. К расчету разветвлен ной цепи с использованием проводимостей

Из выражений (2.24) и (2.25) следует, что эквивалентная активная проводимость цепи равна арифметической сумме активных проводимостей параллельно включенных ветвей:

gэ = g1 + g2 +... + gn, (2.26)

а эквивалентная реактивная проводимость — алгебраической сумме реактивных проводимостей параллельно включенных ветвей:

bэ = bL1 + bС2 +... + bLn + bСп. (2.27)

При этом проводимости ветвей с индуктивным характером нагрузки берут со знаком плюс, ветвей с емкостным характером нагрузки — со знаком минус. Полная эквивалентам проводимость цепи

(2.28)

По эквивалентным активной, реактивной и полной проводимостям можно определить параметры эквивалентной схемы (рис. 2.17, в) цепи.

Эквивалентные активное, реактивное и полное сопротивления цепи определяют с помощью выражений

zэ = 1/уэ , rэ = gэzэ2, хэ = bэzэ2.

Необходимо отметить, что если ΣbL > ΣbC, то эквивалентное сопротивление хэ будет индуктивным, если ΣbC > ΣbL —емкостным.

мешанное соединение потребителей. Расчет цепи при смешанном соединении потребителей (рис. 2.18, а) может быть произведен путем замены ее простейшей эквивалентной цепью. Для этого вначале определяют активные, реактивные и полные проводимости параллельно включенных ветвей: g1, g2, b1, b2, у1, у2.

Затем находят эквивалентные активную, реактивную и полную проводимости параллельного участка цепи:

gэ = g1+ g2;

bэ = b1 + b2;

Далее определяют эквивалентные активное, реактивное и полное сопротивления параллельного участка цепи:

rэ = gэzэ2; xэ = bэzэ2; zэ = 1/уэ.

В результате расчетов цепь может быть заменена эквивалентной цепью (рис. 2.18, б), где все сопротивления включены последовательно. Общие активное, реактивное и полное сопротивления цепи равны

rоб = rэ + r.

xоб = x ± xэ,

Цепь приобретает простейший вид, изображенный на рис. 2.18, в. Общий ток цепи определяют по закону Ома:

I = U/zоб

Напряжение между точками а и b

Uab = Izэ = I/уэ.

Токи в параллельных ветвях равны

I1 = Uab у1, I2 = Uab у2.

 

РЕЗОНАНС ТОКОВ

Резонанс токов может возникнуть в параллельной цепи (см. рис. 2.17, а), одна из ветвей которой содержит L и r, а другая Си r.

Резонансом токов называется такое состояние цепи, когда общий ток совпадает по фазе с напряжением, реактивная мощность равна нулю и цепь потребляет только активную мощность. На рис. 2.17, г изображена векторная диаграмма цепи рис. 2.17, а при резонансе токов.

Как видно из векторной диаграммы, общий ток цепи совпадает по фазе с напряжением, если реактивные составляющие токов ветвей с индуктивностью и емкостью равны по модулю:

I = I.

Общий реактивный ток цепи, равный разности реактивных токов ветвей, в этом случае равен нулю:

I - I = 0.

Общий ток цепи имеет только активную составляющую, равную сумме активных составляющих токов ветвей:

Iа = I + I.

Выразив реактивные токи через напряжения и реактивные проводимости, получим

UbL = UbС,

откуда

bL = bС.

Итак, при резонансе токов реактивная проводимость ветви с индуктивностью равна реактивной проводимости ветви с емкостью.

Выразив bL и bС через сопротивления соответствующей ветви, можно определить резонансную частоту контура:

откуда

В идеальном случае, когда r1 = r2 = 0,

При резонансе токов коэффициент мощности равен единице:

cos φ = 1.

Полная мощность равна активной мощности:

S = P.

Реактивная мощность равна нулю:

Q = QL - QC = 0.

Энергетические процессы в цепи при резонансе токов аналогичны процессам, происходящим при резонансе напряжений, которые были подробно рассмотрены в § 2.12.

Реактивная энергия действует внутри цепи: в одну часть периода энергия магнитного поля индуктивности переходит в энергию электрического поля емкости, в следующую часть периода энергия электрического поля емкости переходит в энергию магнитного поля индуктивности. Обмена реактивной энергией между потребителями цепи и источником питания не происходит. Ток в проводах, соединяющих цепь с источником, обусловлен только активной мощностью.

Рис. 2.19. Электрическая цепь (а) и графики зависимости Ir, IL, IC и I от частоты f (б)

 

Для резонанса токов характерно, что общий ток при определенном сочетании параметров цепи может быть значительно меньше токов в каждой ветви. Например, в идеальной цепи, когда r1 = r2 = 0 (см. рис. 2.18, а), общий ток равен нулю, а токи ветвей с емкостью и индуктивностью существуют, они равны по модулю и сдвинуты по фазе на 180°. Резонанс в цепи при параллельном соединении потребителей называется резонансом токов.

Резонанс токов может быть получен путем подбора параметров цепи при заданной частоте источника питания или путем подбора частоты источника питания при заданных параметpax цепи.

Представляет интерес влияние частоты источника питания на значения токов в цепи, например в цепи, изображенной на рис. 2.19, а.

Ток в ветви с индуктивностью обратно пропорционален частоте:

IL = U/2πfL,

а ток в ветви с емкостью прямо пропорционален частоте:

IС =U2πfC.

Ток в ветви с активным сопротивлением не зависит от частоты 1:

Ir = U/r.

Вектор общего тока в цепи равен геометрической сумме векторов токов ветвей:

Ī =Īr + ĪLС,

1Если пренебречь влиянием вытеснения тока к поверхности проводника.

а значение тока

При f = 0

IL = ∞; IC = 0; Ir = U/r; I = ∞.

При f = fрез

IL = IC; I = Ir = U/r.

При f → ∞

IL → 0; IC → ∞; Ir = U/r; I → ∞.

Графики зависимости Ir, IL, IС и I от частоты изображены на рис. 2.19,б.

Большинство промышленных потребителей переменного тока имеют активноиндуктивный характер; некоторые из них работают с низким коэффициентом мощности и, следовательно, потребляют значительную реактивную мощность. К таким потребителям относятся асинхронные двигатели, особенно работающие с неполной нагрузкой, установки электрической сварки, высокочастотной закалки и т. д.

Для уменьшения реактивной мощности и повышения коэффициента мощности параллельно потребителю включают батарею конденсаторов.

Реактивная мощность конденсаторной батареи уменьшает общую реактивную мощность установки, так как

Q = QL - QC,

и тем самым увеличивает коэффициент мощности.

Повышение коэффициента мощности приводит к уменьшению тока в проводах, соединяющих потребитель с источником энергии, и полной мощности источника.

Рис. 2.20. Электрическая цепь к примеру 2.5

 

Пример 2.5. Определить емкость конденсатора, при которой в цепи рис. 2.20 возникает резонанс токов, если xL = 40 Ом,

r1 = 30 Ом, r2 = 28 Ом, f = 1000 Гц.

Решение. При резонансе токов реактивная мощность цепи равна нулю:

QL - QС = 0, или QL = QC.

; ;

;

Емкость конденсатора

;

.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...