Превращение аустенита в мартенсит при высоких скоростях охлаждения
Данное превращение имеет место при высоких скоростях охлаждения, когда диффузионные процессы подавляются. Сопровождается полиморфным превращением Feγ в Feα. При охлаждении стали со скоростью, больше критической (V>Vк), превращение начинается при температуре начала мартенситного превращения (Мн) и заканчивается при температуре окончания мартенситного превращения (Mк). В результате такого превращения аустенита образуется продукт закалки — мартенсит. Минимальная скорость охлаждения Vк, при которой весь аустенит переохлаждается до температуры т. Мн и превращается, называется критической скоростью закалки. Так как процесс диффузии не происходит, то весь углерод аустенита остается в решетке Feα и располагается либо в центрах тетраэдров, либо в середине длинных ребер (рис. 12.1). Мартенсит — пересыщенный твердый раствор внедрения углерода в Fe. При образовании мартенсита кубическая решетка Feα сильно искажается, превращаясь в тетрагональную (рис. 12.1а). Искажение решетки характеризуется степенью тетрагоналъности: с/а>1. Степень тетрагональности прямо пропорциональна содержанию углерода в стали (рис. 12.1 б). Механизм мартенситного превращения имеет ряд особенностей. 1. Бездиффузионный характер. Превращение осуществляется по сдвиговому механизму. В начале превращения имеется непрерывный переход от решетки аустенита к решетке мартенсита (когерентная связь). При превращении гранецентрированной кубической решетки в объемно-центрированную кубическую атомы смещаются на расстояния меньше межатомных, т.е. нет необходимости в самодиффузии атомов железа.
Рис. 12.1. Кристаллическая решетка мартенсита (а); влияние содержания углерода на параметры (а) и с решетки мартенсита (б)
2. Ориентированность кристаллов мартенсита. Кристаллы имеют форму пластин, сужающихся к концу, под микроскопом такая структура выглядит как игольчатая. Образуясь мгновенно пластины растут либо до границы зерна аустенита, либо до дефекта. Следующие пластины расположены к первым под углами 60° или 120°, их размеры ограничены участками между первыми пластинами (рис. 12.2). Рис. 12.2. Ориентированность кристаллов мартенсита
3. Очень высокая скорость роста кристалла, до 1000 м/с. 4. Мартенситное превращение происходит только при непрерывном охлаждении. Для каждой стали начинается и заканчивается при определенной температуре, независимо от скорости охлаждения. Температуру начала мартенситного превращения называют мартенситной точкой Мн, а температуру окончания превращения — Мк. Температуры Мн и Мк зависят от содержания углерода и не зависят от скорости охлаждения. Для сталей с содержанием углерода выше 0,6% Мк уходит в область отрицательных температур (рис. 12.3).
Рис. 12.3. Зависимость температур начала (Мн) и конца (Мк) мартенситного превращения от содержания углерода в стали
Мартенситное превращение чувствительно к напряжениям, и деформация аустенита может вызвать превращение даже при температурах выше Мн. В сталях с Мк ниже 20°С присутствует аустенит остаточный, его количество тем больше, чем ниже Мн и Мк (при содержании углерода 0,6...1,0% количество аустенита остаточного — 10%, при содержании углерода 1,5% — до 50%). В микроструктуре наблюдается в виде светлых полей между иглами мартенсита.
5. Превращение необратимое. Получить аустенит из мартенсита невозможно. Свойства мартенсита обусловлены особенностями его образования. Он характеризуется высокой твердостью и низкой пластичностью, что обуславливает хрупкость. Твердость составляет до 65 НRC. Высокая твердость вызвана влиянием внедренных атомов углерода в решетку α-фазы, что вызывает ее искажение и возникновение напряжений. С повышением содержания углерода в стали возрастает склонность к хрупкому разрушению.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|