Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Тригонометрические функции. 2 глава




Лучшим способом выявления большого потенциала масштабируемой архитектуры для любого приложения может быть ее применение в серии небольших примеров из практики. В небольших приложениях один компьютер управляет всеми тревогами, графиками, отчетами и задачами ввода/вывода. Система может быть полностью независимой или интегрированной в существующую структуру. По мере расширения приложения (например, добавляются два узла) дополнительный компьютер может быть использован для каждого узла (рис. 1.4).

 

 

Рис.1.4 – Схема с добавлением локальной сети

 

Однако такую схему можно улучшить добавлением ЛВС и выделенного сервера ввода/вывода. Такая централизация устраняет ненужные вычисления. Задачи отображения распределены по компьютерам, так что каждый оператор может получать необходимые данные. Поскольку задачи отображения обрабатываются локально и лишь запросы к данным поступают на центральный сервер, такая система значительно улучшает производительность и гибкость.

 

 

Рис. 1.5 – Многоуровневая система по паролю

 

Другим достоинством такой системы является необходимость наличия только одного принтера, доступного из любого компьютера в сети. Дополнительные операторы могут быть легко подключены к системе. Менеджерам и группе качества может быть предоставлен доступ к данным производственного процесса. Многоуровневая система по паролю ограничивает доступ к данным и защищает оборудование предприятия от несанкционированных обращений. Например, каждому оператору может быть предоставлен доступ лишь к определенным объектам на предприятии; группа качества может иметь доступ, ограниченный только чтением данных на всем предприятии, в то время как начальник смены обладает неограниченным доступом. Связь с большим компьютером может поддерживать загрузку регламентов и управление выпуском продукции, а, в свою очередь, отчеты и журналы тревог могут поступать обратно в отделы планирования и управления. То, что начиналось как небольшое приложение, превратилось в среднюю по размерам систему, не потребовав изменения ни оборудования, ни ПО. Инвестиции были сохранены на каждой стадии развития. Для приложения большого размера, как правило, требуется отдельный сервер для задач отчетов, тревог и графиков. Как дополнение может быть использован файловый сервер для хранения конфигурации БД и общего ПО (рис. 1.6).

 

 

Рис 1.6 – Система с отдельными серверами

 

 


 

Лекция №2.

 

Тема: “Терминология технических средств. Структура ПЛК. Операционная система ПЛК. Классификация микропроцессорных ПТК. Критерии выбора промышленных контроллеров. Адекватность функционально-технологической структуре объекта. Специализированные модули контроллеров для АСУТП”.

 

 

2.1 Терминология технических средств

 

Функциональное определение программируемого контроллера объединяет (как минимум) четыре класса технических средств автоматизации:

– промышленный компьютер;

– программируемый (иногда промышленный) контроллер;

– программируемый логический контроллер;

– контроллер сбора данных УСО в распределенных системах.

Зачастую дополнительную путаницу в терминологию вносит сокращение ПК, которое одновременно обозначает и промышленный компьютер, и программируемый контроллер, а иногда (по неаккуратности использования терминологии) и программируемый логический контроллер. Однако, использование одной аббревиатуры ПК для всех этих средств не случайно, поскольку они имеют одинаковые особенности:

– средства выполнены на основе микропроцессорной элементной базе и являются микропроцессорными системами;

– средства уже имеют в своем составе (или могут быть легко дооснащены) устройства(ми) сопряжения с объектом (УСО), которые выполняют функции гальванической развязки источников дискретного, аналогового сигналов, конечного силового оборудования и устройств ввода/вывода контроллера, приведения границ шкалы непрерывного сигнала к стандартному диапазону измерительного канала, предварительной низкочастотной фильтрации;

– средства имеют конструктивное специальное исполнение - размещение плат на специальных шасси, покрытие плат специальными составами, применение пыле- и влагонепроницаемых корпусов, рассчитанных на избыточное внутреннее давление и т. д. Все эти меры обеспечивают работоспособность с высокой надежностью в условиях повышенного уровня электромагнитных помех, воздействия агрессивной химической среды, вибрациях, удаленного расположения объекта от средства управления.

Границы между средствами в значительной степени размыты. Однако описать функциональные отличительные особенности каждого типа средств представляется возможным.

Промышленный компьютер. В настоящее время – это WINDOWS совместимый компьютер в промышленном исполнении. В нем присутствует полный набор средств MMI, но дисплеи, клавиатуры, винчестеры, тоже имеют специальное исполнение. Часто встречается щитовой вариант исполнения.

Универсальный программируемый контроллер – это микропроцессорная система, мощность которой практически не отличается от мощности промышленного компьютера. Однако если для последнего одной из основных была функция MMI, то контроллер ориентирован в основном на работу в качестве локального узла сбора и передачи данных в распределенной сети в реальном масштабе времени или на локальное управление объектом. Промышленные контроллеры часто оснащены аналоговыми и дискретными адаптерами ввода/вывода подобно ПЛК. В последнее время под промышленным контроллером все чаще понимают WINDOWS совместимые платформы типа microPC и PC 104, хотя это и не обязательно. С функциональной точки зрения изделия этих двух классов объединяет важная особенность – открытое программное обеспечение. В эти изделия может быть загружено любое программное обеспечение, работающее под управлением операционной среды WINDOWS или специальных операционных систем (ОС) реального времени, программа управления может быть написана на языках высокого уровня общего применения. Эта особенность является чрезвычайно привлекательной.

Программируемый логический контроллер – это микропроцессорная система специального назначения с проблемно-ориентированным программным обеспечением для реализации алгоритмов логического управления и/или замкнутых систем автоматического управления в сфере промышленной автоматики. ПЛК отличаются от специализированных встраиваемых микропроцессорных контроллеров универсальностью структуры и инвариантностью по отношению к объекту управления в пределах указанного класса задач.

Контроллер сбора данных представляет собой микропроцессорную систему, предназначенную только для сбора информации. Эти контроллеры выполняют функции преобразования сигналов группы первичных датчиков в цифровой код и передачи, полученных данных устройству верхнего уровня, используя какой-либо из протоколов локальных промышленных сетей.

Программное обеспечение двух последних типов систем не является открытым.

 

2.2 Структура ПЛК.

 

Первые ПЛК появились в 1967 г. и были предназначены для локальной автоматизации наиболее часто встречающихся в промышленности технологических задач, которые описывались преимущественно логическими уравнениями. ПЛК с успехом заменили блоки релейной автоматики и устройства жесткой логики на интегральных микросхемах малой и средней степени интеграции. Отсюда и название — программируемый логический контроллер, или Programmable Logic Controller (PLC). Аппаратные средства, программное обеспечение и конструктивное исполнение ПЛК должны удовлетворять следующим требованиям:

– универсальная структура изделия, которая позволяет свести каждую новую разработку к выбору среди существующих аппаратных средств и разработке новой управляющей программы;

– высокая надежность;

– удобство обслуживания и эксплуатации;

– простое программирование и перепрограммирование устройства (возможно не специалистом в области компьютерной техники);

– стандартизация входов и выходов для непосредственного подключения датчиков и исполнительных устройств;

– меньшие габариты и энергопотребление, чем у аналогичных блоков релейной автоматики и жесткой логики;

– конкурентоспособность по стоимости со схемами на основе релейной техники, жесткой полупроводниковой логики, возможность обмена информацией с системой управления верхнего уровня.

Тридцатилетний опыт технического развития и эксплуатации привел к выделению ПЛК в отдельный класс микропроцессорных систем. ПЛК представляют собой завершенную форму микропроцессорных средств, которые характеризуются оригинальной архитектурой и специальным программным обеспечением. Реализованные решения в области аппаратных и программных средств преследуют цель обеспечения максимально возможного уровня надежности при работе в промышленных условиях эксплуатации. Весь комплекс этих решений можно подразделить на следующие функциональные группы:

– специальная архитектура центрального процессора ПЛК;

– использование различных способов резервирования;

– использование программных методов защиты информации;

– специальная схемотехника УСО;

– организация специальных быстродействующих магистралей связи с удаленными УСО;

– специальное конструктивное исполнение.

Структура ПЛК, подключенного к объекту управления, показана на рис11.3. Центральный процессор (CPU) включает собственно микропроцессор, память программ и память данных, формирователи магистрали сопряжения с локальными модулями ввода/вывода, адаптеры связи с удаленными модулями УСО, адаптеры связи с периферийным сервисным оборудованием (пульт оператора, дисплеи, печатающее устройство). Локальными модулями УСО называют модули, конструктивно расположенные в одном крейте с платами ЦП и памяти ПЛК.

Рис 2.1 – Программируемый логический контроллер в системе управления

 

Центральный процессор (ЦП) ПЛК имеет следующие особенности:

– память программ и память данных ПЛК разделены не только логически, но и физически. Специализация центральной памяти ЦП является отличительной особенностью ПЛК, причем область памяти выходных переменных обязательно выполнена энергонезависимой с целью поддержания состояния объекта при отключении питания;

– в ЦП ПЛК встраиваются аппаратные устройства контроля адресного пространства, которые могут быть различными, в зависимости от структуры блоков памяти ПЛК;

– при построении ЦП используются методы структурного резервирования составных элементов;

– несколько сторожевых таймеров, входящих в состав ЦП ПЛК, контролируют строго определенное время выполнения одного цикла управляющей программы и отдельных ее частей;

– ЦП средних и мощных ПЛК часто выполнены многопроцессорными, причем распределение задач между отдельными процессорами обусловлено типовыми алгоритмами функционирования ПЛК, а способы передачи информации между процессорами подчиняются жесткому требованию реализации программы управления объектом за строго определенный временной интервал.

Интерфейс между датчиками, исполнительными устройствами, и ЦП ПЛК обеспечивается специальными электронными модулями ввода/вывода (адаптеры). В связи с тем, что ПЛК ориентированы на работу в промышленных условиях, особое внимание уделяется схемотехнике и конструкции помехоустойчивых дискретных входов/выходов.

 

 

2.3 Операционная система ПЛК

 

Память программ ПЛК состоит из двух сегментов. Первый сегмент – неизменяемая часть, которая содержит ОС ПЛК. По существу, это — интерпретатор инструкций программы пользователя, которые размещаются во втором сегменте памяти – сегменте программы управления. Второй сегмент – это изменяемая часть программы. Она заносится на этапе адаптации серийного изделия для управления конкретным объектом. ПЛК отличается циклическим характером работы. Каждый цикл выполнения программы управления включает четыре этапа (рис11.5). На первом этапе происходит тестирование аппаратуры ЦП. Если тест дает удовлетворительные результаты, производится запуск цикла. На втором этапе осуществляется опрос всех входных переменных и запоминание их состояния в специальной области оперативной памяти данных, называемой PII (Process Input Image - образ состояния входных переменных). На третьем этане ЦП производит вычисление логических выражений, составляющих программу пользователя, используя в качестве аргументов состояние входных образов и внутренние переменные.

 

Рис 2.2 – Диаграмма работы ПЛК SIMATIC S7-200/300/400

 

Последние используются для обозначения режимов работы системы, а также отражают состояние программно-моделируемых таймеров и счетчиков. Результатом выполнения программы являются значения выходных переменных и новые значения внутренних переменных. ЦП записывает выходные переменные в другую специальную область памяти данных, называемую POI (Process Output Image — образ состояния выходных переменных). Одновременно ЦП управляет счетчиками, таймерами и обозначает новые режимы работы системы установкой или сбросом битов состояний в памяти. На четвертом этапе слово выходных воздействий выдается (все разряды одновременно) из POI в порты вывода и поступает на входы адаптеров выходных сигналов. Далее цикл работы ПЛК воспроизводится снова.

 

 

2.4 Классификация микропроцессорных ПТК.

 

Все выпускаемые универсальные микропроцессорные ПТК подразделяются на классы, каждый из которых выполняет определенный набор функций. Рассмотрим ПТК, начиная с простейшего класса, минимального по функциям и объему автоматизируемого объекта, и, кончая классом, который может охватывать задачи планирования и технического управления на всем предприятии.

а) Контроллер на базе ПК. Это направление существенно развилось в последнее время с повышением надежности работы ПК, наличия их модификаций в обычном и промышленном исполнении; открытой архитектуры, легкости включения в них любых блоков ввода/вывода; возможности использования уже наработанной широкой номенклатуры ПО (ОС РВ, БД, ППП контроля и управления). Основные сферы использования контроллеров на базе ПК – специализированные системы автоматизации в медицине, научных лабораториях, средствах коммуникации, для небольших замкнутых объектов в промышленности. Общее число входов/выходов такого контроллера обычно не превосходит нескольких десятков, а функции выполняют достаточно сложную обработку измерительной информации с расчетом управляющих воздействий. Рациональную область применения контроллеров на базе ПК можно очертить следующими условиями:

– при нескольких входах и выходах объекта надо производить большой объем вычислений за достаточно малый интервал времени (необходима большая вычислительная мощность);

– средства автоматизации работают в окружающей среде, не слишком отличающейся от условий работы обычных ПК;

– нет необходимости в использовании контроллера;

– реализуемые контроллером функции целесообразно (в силу их нестандартности) программировать не на одном из специальных технологических языков, а на обычном языке программирования высокого уровня типа C++, PASCAL;

– мощная поддержка работы операторов, реализуемая в обычных контроллерах: диагностика, устранение неисправности без остановки работы контроллера, модификация ПО во время работы системы автоматизации.

На рынке контроллеров, на базе ПК в России успешно работают компании: Octagon, Advantech, Analog Devices и др. Многие российские фирмы закупают компьютерные платы и платы ввода/вывода этих фирм и строят из них контроллеры. Следует отметить, что в России этот класс контроллеров непомерно раздут и частично занимает нишу следующих классов ПТК из-за:

– агрессивной рекламы фирм, работающих в этом секторе рынка;

– легкости создания из компьютерных плат новых типов контроллеров, привлекающей многие небольшие российские компании, создающие свои ПТК;

– простоты и привычности создания ПО для ПК;

– непонимания заказчиками важности тех свойств, которые есть у специально разработанных контроллеров и отсутствуют у контроллеров, построенных на базе ПК.

б) Локальный ПЛК. В настоящее время распространяются несколько их типов:

– встраиваемый в оборудование и являющийся его неотъемлемой частью; примеры такого интеллектуального оборудования: станки с ЧПУ, автомашинисты, современные аналитические приборы;

– автономный, реализующий функции контроля и управления небольшим, достаточно изолированным технологическим объектом.

Если встраиваемые контроллеры выпускаются без специального кожуха, поскольку они монтируются в общий корпус оборудования, то автономные контроллеры помещаются в защитные корпуса, рассчитанные на разные условия окружающей среды. Почти всегда эти контроллеры имеют порты, соединяющие их в режиме "точка-точка" с другой аппаратурой, и интерфейсы, которые могут через сеть связывать их с другими средствами автоматизации (РСУ, диспетчерскими системами, пультами операторов и т. п.); часто в такой контроллер встраивается или подключается панель ЧМИ, состоящая из дисплея и функциональной клавиатуры.

Следует выделить специальные типы контроллеров, выпускаемых для аварийной защиты процессов и оборудования и отличающиеся высокой надежностью, живучестью, быстродействием. В этих контроллерах предусмотрены различные варианты полной диагностики и резервирования, как отдельных компонентов, так и всего контроллера в целом. Можно отметить следующие распространенные варианты резервирования:

– горячий резерв всех компонентов и/или контроллера в целом (при непрохождении теста в рабочем контроллере управление безударно переходит ко второму контроллеру);

– троирование основных компонентов и/или контроллера в целом с "голосованием" результатов обработки сигналов всех контроллеров (выходной сигнал принимается тот, который дало большинство, а контроллер, давший другой результат, объявляется неисправным);

– - работа по принципу "пара и резерв". Параллельно работает пара контроллеров с голосованием результатов, а аналогичная пара находится в горячем резерве; при выявлении разности результатов работы первой пары управление переходит ко второй; первая пара тестируется и либо выявляется наличие случайного сбоя, тогда управление возвращается к ней, либо выявляется неисправность и управление остается у второй.

Контроллеры обычно рассчитаны на десятки входов/выходов от датчиков и ИМ; их вычислительная мощность невелика; они реализуют простейшие типовые функции обработки измерительной информации, логического управления, регулирования. Зарубежные фирмы, работающие в этом секторе рынка: General Electric; Rockwell; Schneider; Siemens.

в) Сетевой комплекс контроллеров. Этот класс ПТК является наиболее широко внедряемым средством управления ТП во всех отраслях промышленности. Минимальный состав ПТК имеет ряд контроллеров, несколько дисплейных пультов операторов, промышленную сеть, соединяющую контроллеры и пульты между собой. Контроллеры определенного сетевого комплекса обычно содержат ряд модификаций, отличающихся друг от друга мощностью, быстродействием, объемом памяти, возможностями резервирования, приспособлением к разным условиям окружающей среды, максимальным числом каналов входов/выходов. Это облегчает использование сетевого комплекса для разнообразных технологических объектов, поскольку позволяет наиболее точно подобрать контроллеры требуемых характеристик под отдельные узлы автоматизируемого агрегата и разные функции контроля и управления. В качестве дисплейных пультов почти всегда используются те или иные ПК в обычном или промышленном исполнении с клавиатурами – обычной алфавитно-цифровой и специальной функциональной, с одним или несколькими мониторами, имеющими большой экран. Промышленная сеть может иметь различную структуру: шину, кольцо, звезду; она часто подразделяется на сегменты, связанные между собою маршрутизаторами. Информация, передаваемая по сети, достаточно специфична – это ряд как периодических, так и случайных во времени коротких сообщений. К их передаче предъявляются требования: сообщения ни в коем случае не могут быть утеряны (должна быть гарантия их доставки адресату); для сообщений высшего приоритета (например, об авариях) должен быть гарантирован интервал времени их передачи.

В меньшей степени этим требованиям удовлетворяет метод случайного доступа к сети, при котором в случае возникновении аварийной ситуации и, как ее следствия, одновременно резкого увеличения числа экстренных сообщений, которые должны пройти через сеть, может возникнуть затор в сети. Это приведет к потере отдельных сообщений, а не только к задержке их доставки адресату. Сетевые комплексы контроллеров имеют верхние ограничения как по сложности выполняемых функций (измерения, контроля, учета, регулирования, блокировки), так и по объему самого автоматизируемого объекта, в пределах тысяч измеряемых и контролируемых величин (отдельный технологический агрегат). Большинство зарубежных фирм поставляет сетевые комплексы контроллеров (порядка сотен входов/выходов на контроллер).

г) РСУ малого масштаба. Этот класс микропроцессорных средств превосходит большинство сетевых комплексов контроллеров по мощности, и сложности выполняемых функций, но имеет ряд ограничений по объему автоматизируемого производства. Основные отличия этих средств от сетевых комплексов контроллеров заключаются в несколько большем разнообразии модификаций контроллеров, блоков ввода/вывода, панелей оператора; большой мощности центральных процессоров, позволяющих им обрабатывать более 10000 входных/выходных сигналов; выделении удаленных блоков ввода/вывода, рассчитанных на работу в различных условиях окружающей среды; более развитой и гибкой сетевой структуре. Зачастую они имеют несколько уровней промышленных сетей, соединяющих контроллеры между собою и с пультами операторов (например, нижний уровень, используемый для связи контроллеров и пульта отдельного компактно расположенного технологического узла, и высший уровень, реализующий связи средств управления отдельных узлов друг с другом и с пультом оператора).

Сетевая структура развивается в направлении создания полевых сетей, соединяющих отдельные контроллеры с удаленными от них блоками ввода/вывода и интеллектуальными приборами (датчиками и ИУ). Такие достаточно простые и дешевые сети позволяют передавать информацию между контроллерами и полевыми приборами в цифровом виде по одной витой паре, что значительно сокращает длину кабельных сетей и уменьшает влияние помех.

Маломасштабные РСУ охватывают отдельные цеха и участки производства и в дополнении к обычным функциям контроля и управления часто могут выполнять более сложные и объемные алгоритмы управления (статическую и динамическую оптимизацию объекта). Эти алгоритмы в зависимости от объема и динамики реализуются либо в самих контроллерах, либо в вычислительных мощностях пультов операторов. Примеры маломасштабных РСУ: ControlLogix фирмы Rockwell Automation; Simatic S7-400 фирмы Siemens; TSX Quantum фирмы, Schneider Automation.

д) Полномасштабные РСУ. Это наиболее мощный класс микропроцессорных ПТК, практически не имеющий границ ни по выполняемым функциям, ни по объему автоматизируемого объекта. Одна такая система может использоваться для автоматизации производственной деятельности крупномасштабного предприятия. Данный класс ПТК включает все особенности перечисленных микропроцессорных средств управления и дополнительно имеет ряд свойств, влияющих на возможности их использования:

- наличие промышленных сетей, позволяющих подсоединять к одной шине сотни узлов (контроллеров и пультов) и распределять их на значительные расстояния;

– существование модификаций контроллеров, наиболее мощных по вычислительным возможностям, что позволяет кроме обычных функций реализовать в них сложные и объемные алгоритмы, контроля, диагностики, управления;

– широкое использование информационных сетей (Ethernet) для связи пультов операторов друг с другом, с серверами БД, для взаимодействия ПТК сетью предприятия и построения управляющих центров (планирования, диспетчеризации, оперативного управления);

– взаимодействие пультов управления в режиме клиент/сервер;

– в составе ППП, реализующих функции управления отдельными агрегатами (многосвязного регулирования, оптимизации и т.д.), диспетчерского управления участками производства, учета и планирования производства в целом.

Примеры фирм: АББ - Symphony; Honeywell - ТРС и PlantScape; Valmet - Damatic XDi; Yokogava -Centum CS, Foxboro - I/A Series, Fisher-Rosemount - Delta-V и др.

Приведенная классификация помогает охватить всю гамму современных микропроцессорных ПТК и выделить основные черты и отличия отдельных классов этих средств. Четких границ между классами ПТК не существует, а в последние годы они тем более размываются, так как открытость и стандартность отдельных компонентов таких комплексов позволяет компоновать их из разных средств, соединять различными типовыми сетями и создавать систему управления из отдельных компонентов, выпускаемых разными фирмами и относящихся к разным классам.

 

 

2.5 Критерии выбора промышленных контроллеров

 

ПЛК получили широкое применение во всех областях промышленного производства. Большая и часто меняющаяся номенклатура ПЛК на рынке производителей средств автоматизации вводит разработчиков АСУТП в затруднительную ситуацию по их выбору, исходя из экономической целесообразности определенного типа контроллера и его конкретного производителя. Если первоначально ПЛК сильно отличались по качеству изготовления компонентов (технология), функциональности (набор базовых и специальных функций), производительности, структуре локальной шины управления и данных для связи с УСО, системным программным средствам, инструментальным пакетам для разработки прикладного ПО и средствам диагностики, то в настоящее время есть тенденция к сближению всего спектра характеристик ПЛК. На рынке ПЛК любая представительная фирма (отечественная или зарубежная) может компетентно заявить о применении своих контроллеров в широкой области промышленной автоматизации. Предлагаются разные варианты базовых критериев при оценке выбора ПЛК:

– технические характеристики;

– эксплуатационные характеристики;

– потребительские свойства.

В разных вариациях ПЛК оцениваются по быстродействию, производительности, объему памяти программ, количеству каналов ввода/вывода и функциональным свойствам. Оценка ПЛК по техническим и эксплуатационным характеристикам и по потребительским свойствам является естественной, но ее нельзя назвать всеобъемлющей. Например, не учитываются коммуникационные возможности, место в иерархии систем АСУТП и другие характеристики. Предлагаются следующие требования, которым могут удовлетворять ПЛК:

– адекватность функционально-технологической структуре объекта;

– оптимальное соотношение цена-производительность;

– широкая номенклатура специализированных модулей (сетевые модули, модули взвешивания, управления движением и др.);

– возможность построения систем резервирования и противоаварийной защиты.

 

 

2.6 Адекватность функционально-технологической структуре объекта

 

Централизованные и распределенные АСУТП представляют собой иерархическую структуру, состоящую из ряда уровней. Для централизованной АСУТП это такие уровни, как:

– диспетчерский;

– цеховой;

– технологический.

Для распределенной АСУТП это уровни:

– диспетчерский;

– цеховой;

– локальный;

– технологический.

ПЛК используются на цеховом и локальном уровнях. Применение контроллеров на цеховом уровне централизованной АСУТП должно удовлетворять следующим основным требованиям:

– локальная или полевая (промышленная) шина обмена между контроллером и распределенным (удаленным) УСО (например, Modbus Plus, PROFIBUS) со скоростью обмена не менее 1 Мбит/с;

– индустриальная шина обмена между контроллером и АРМ диспетчера;

– количество переменных на один ПЛК превышает 280/112 дискретных/аналоговых;

– ОС реального времени;

– синхронизация времени;

– обработка прерываний;

– контуры регулирования;

– архивирование данных;

– система резервирования (не обязательно);

– программирование в режиме реального времени (on-line).

Применение контроллеров на цеховом уровне распределенных АСУТП аналогично их применению на цеховом уровне централизованных АСУТП, за исключением следующих особенностей:

– обязательна система резервирования;

– количество переменных на систему достигает 1000;

– для обмена данными между цеховым контроллером и локальными контроллерами используется полевая шина.

Применение контроллеров на локальном уровне распределенных АСУТП должно удовлетворять следующим основным требованиям:

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...