Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Тригонометрические функции. 3 глава




– локальная полевая шина обмена между контроллером и распределенным (удаленным) УСО (например, Modbus Plus, PROFIBUS) со скоростью обмена не менее 1 Мбит/с;

– полевая шина обмена между локальным и цеховым контроллерами;

– количество переменных на один ПЛК достигает 280/112 дискретных/аналоговых;

– ОС реального времени;

– поддержка синхронизации времени;

– контуры регулирования;

– программирование в режиме реального времени (on-line).

В отдельную группу выделяются контроллеры для следующих применений:

– контроллеры противоаварийной защиты (ПАЗ);

– контроллеры сбора удаленных каналов телемеханики (RTU).

Контроллеры ПАЗ применяются в системах противоаварийной защиты. Особенности системы ПАЗ состоят в следующем:

– высокая готовность системы;

– контроллер ПАЗ может быть выделен из системы в отдельный блок, если система ПАЗ входит в состав АСУТП;

– резервирование источников питания системы;

– малое время реакции системы на событие (прерывание);

– ввод аналоговых сигналов без мультиплексирования производится высокоскоростными модулями УСО с изоляцией между каналами не менее 1500 В.

Контроллеры входят в состав оборудования автоматизированных систем контроля и управления (АСКУ) удаленными объектами, где средства коммуникации и доступа к объекту затруднены. Свойства контроллеров, входящих в состав АСКУ удаленных объектов, следующие:

– коммуникационная поддержка последовательных и модемных каналов;

– стандартный протокол обмена;

– расширенный диапазон температуры от – 40 до +60 ˚C;

– встроенная диагностика;

– программирование в режиме реального времени (on-line);

– защита от провалов питания с помощью батареи или бесперебойного ИП.

Производительность ПЛК оценивается по следующим характеристикам:

– время считывания (выбора) канала телеизмерения;

– время обработки команд (двоичных, логических, булевых);

– время оборота маркера на внешней шине;

– цикл приложения задачи мастера (опрашивающего устройства);

– пропускная способность локальной или промышленной шины;

– цикл приложения задачи исполнителя (опрашиваемого устройства).

Одним из существенных параметров ПЛК является время считывания (Тск) канала модуля телеизмерения. Это время представляется в технических характеристиках на модуль УСО неявно в виде времени преобразования аналогового модуля (около 50 мкс для типового модуля) и в явном виде приводится в пределах 0,2….4,0 мс, Суммарное время преобразования и время на обработку результата (время драйвера модуля УСО) определяет Тск.

Время обработки команд (Ток) дается в технических характеристиках на модуль ЦП в расчете на обработку 1К операций. Это время относится к обработке операндов в приложении, косвенно можно оценить по объему приложения в памяти программ. Как правило, время обработки команд значительно превышает суммарное время считывания каналов и в итоге определяет время цикла задачи в инструментальном пакете ПЛК Время оборота маркера (Том) определяется циклами считывания модулей УСО на локальной шине или циклами прикладной задачи на локальных контроллерах, а также пропускной способностью шины.

 

 

2.7 Специализированные модули контроллеров для АСУТП

 

Наряду с традиционными модулями дискретных, аналоговых и последовательных каналов на рынке промышленных контроллеров имеется ниша для набора специализированных модулей, которые расширяют номенклатуру спектра применения промышленных контроллеров. Состав специализированных модулей следующий:

– модули коммуникационные;

– модули – счетчики;

– модули частотные;

– модули взвешивания;

– модули управления движением;

– модули защиты;

– модули скоростного аналогового ввода для систем измерения в реальном времени.


Лекция №3.

 

Тема: “Основные понятия промышленных сетей. Основные характеристики ЦПС. AS-interface. Profibus PA. Интерфейс RS-485”

 

 

3.1 Основные понятия промышленных сетей

 

В течение многих лет системы обмена данными строились по традиционной централизованной схеме, в которой имелось одно мощное вычислительное устройство и огромное количество кабелей, посредством которых осуществлялось подключение датчиков и исполнительных механизмов. Такая структура диктовалась высокой ценой электронно-вычислительной техники и относительно низким уровнем автоматизации производства. На сегодняшний день у этого подхода практически не осталось приверженцев. Такие недостатки централизованных АСУ ТП, как большие затраты на кабельную сеть и вспомогательное оборудование, сложный монтаж, низкая надежность и сложная реконфигурация, сделали их во многих случаях абсолютно неприемлемыми как экономически, так и технологически.

В условиях бурно растущего производства микропроцессорных устройств альтернативным решением стали цифровые промышленные сети (Fieldbus), состоящие из многих узлов, обмен между которыми производится цифровым способом. На сегодняшний день на рынке представлено около сотни различных типов промышленных сетей, протоколов и интерфейсов, применяемых в системах автоматизации, среди которых Modbus, PROFIBUS, Interims, Bitbus, CAN, LON, Fieldbus, Ethernet и др.

Использование промышленной сети позволяет расположить узлы, в качестве которых выступают контроллеры и интеллектуальные устройства ввода-вывода, максимально приближенно к оконечным устройствам (датчикам и исполнительным механизмам), благодаря чему длина аналоговых линий сокращается до минимума. Каждый узел промышленной сети выполняет несколько функций:

– прием команд и данных от других узлов промышленной сети;

– считывание данных с подключенных датчиков;

– преобразование полученных данных в цифровую форму;

– отработка запрограммированного технологического алгоритма;

– выдача управляющих воздействий на подключенные исполнительные механизмы по команде другого узла или согласно технологическому алгоритму;

– передача накопленной информации на другие узлы сети.

АСУ ТП на базе промышленных сетей по сравнению с традиционными централизованными системами имеют несколько особенностей:

1. Существенная экономия кабельной продукции. Вместо километров дорогих кабелей требуется несколько сот метров дешевой витой пары. Также сокращаются расходы на вспомогательное оборудование (кабельные каналы, клеммы, шкафы).

2. Повышение надежности системы управления. По надежности цифровой метод передачи данных намного превосходит аналоговый. Передача в цифровом виде малочувствительна к помехам и гарантирует доставку информации благодаря специальным механизмам, встроенным в протоколы промышленных сетей (контрольные суммы, повтор передачи искаженных пакетов данных). Повышение надежности функционирования и живучести АСУ ТП на базе промышленных сетей так же связано с распределением функций контроля и управления по различным узлам сети. Выход из строя одного узла не влияет либо влияет незначительно на отработку технологических алгоритмов в остальных узлах. Для критически важных технологических участков, возможно дублирование линий связи или наличие альтернативных путей передачи информации. Это позволяет сохранить работоспособность системы в случае повреждения кабельной сети.

3. Гибкость и модифицируемость. Добавление или удаление отдельных точек ввода-вывода и даже целых узлов требует минимального количества монтажных работ и может производиться без остановки системы автоматизации. Переконфигурация системы осуществляется на уровне программного обеспечения и также занимает минимальное время.

4. Использование принципов открытых систем, открытых технологий, что позволяет успешно интегрировать в единую систему изделия от различных производителей.

Большое разнообразие открытых промышленных сетей, интерфейсов и протоколов связано с многообразием требований автоматизируемых технологических процессов. Эти требования не могут быть удовлетворены универсальным и экономически оптимальным решением. Сейчас уже очевидно, что ни одна из существующих сетей не станет единственной, похоронив все остальные.

Когда обсуждается вопрос о выборе типа промышленной сети, необходимо уточнять, для какого именно уровня автоматизации этот выбор осуществляется. В зависимости от места сети в иерархии промышленного предприятия требования к ее функциональным характеристикам будут различны. Иерархия АСУ промышленным предприятием обычно представляется в виде трехэтажной пирамиды:

1. Уровень управления предприятием (верхний уровень).

2. Уровень управления технологическим процессом.

3. Уровень управления устройствами.

На уровне управления предприятием располагаются обычные IBMPC-совместимые компьютеры и файловые серверы, объединенные локальной сетью. Задача вычислительных систем на этом уровне - обеспечение визуального контроля основных параметров производства, построение отчетов, архивирование данных. Объемы передаваемых между узлами данных измеряются мегабайтами, а временные показатели обмена информацией не являются критичными.

На уровне управления технологическим процессом осуществляется текущий контроль и управление либо в ручном режиме с операторских пультов, либо в автоматическом режиме по заложенному алгоритму. На этом уровне выполняется согласование параметров отдельных участков производства, отработка аварийных и предаварийных ситуаций, параметризация контроллеров нижнего уровня, загрузка технологических программ, дистанционное управление исполнительными механизмами. Информационный кадр на этом уровне содержит, как правило, несколько десятков байтов, а допустимые временные задержки могут составлять от 100 до 1000 миллисекунд в зависимости от режима работы.

На уровне управления устройствами располагаются контроллеры, осуществляющие непосредственный сбор данных от датчиков и управление исполнительными устройствами. Размер данных, которыми контроллер обменивается с оконечными устройствами, обычно составляет несколько байтов при скорости опроса устройств не более 10 мс.

В последнее время рассмотренная структура систем управления существенно усложняется, при этом стираются четкие грани между различными уровнями. Это связано с проникновением Internet/Intranet-технологий в промышленную сферу, значительными успехами промышленного Ethernet, использованием некоторых промышленных сетей Fieldbus во взрывоопасных зонах на предприятиях. Кроме того, появление интеллектуальных датчиков и исполнительных механизмов и интерфейсов для связи с ними фактически означает появление четвертого, самого нижнего уровня АСУ ТП - уровня сети оконечных устройств.

Возрастающая степень автоматизации в технике производства привносит на нижний уровень автоматизации полевой уровень, постоянно увеличивающееся число устройств обработки параметров технологического процесса и влияния на эти параметры. При этом речь идет об измерительных преобразователях, например, для учета температуры, давления, дифференциального давления или потока, а также об электрических или пневматических исполнительных устройствах.

Характерным для нижнего уровня автоматизации является то, что между большим числом датчиков, исполнительных и полевых устройств и малым количеством вышестоящих устройств автоматизации происходит обмен данными незначительного информационного содержания.

На сегодняшний день на рынке представлено около сотни различных типов цифровых промышленных сетей (ЦПС), применяемых в системах автоматизации. Технические и стоимостные различия этих систем настолько велики, что выбор решения, оптимально подходящего для нужд конкретного производства, является непростой задачей. Преимущества цифровых сетей по сравнению с централизованными системами можно подразделить на две категории. Переход на цифровую передачу данных означает возможность замены километров дорогих кабелей на несколько сот метров дешевой витой пары. ЦПС обеспечивают дополнительные преимущества по таким показателям, как надёжность, гибкость и эффективность, что является прямым следствием их децентрализованной структуры. В настоящее время основной тенденцией в организации полевых ЦПС является обеспечение передачи не только данных, но и энергии питания для оконечных устройств. Разработчики ЦПС стараются совместить эти два требования в одной ЦПС, для чего на физическом уровне применяются либо уже готовые стандарты (например, IEC 61158-2), либо разработанные самостоятельно спецификации.

 

 

3.2. Основные характеристики ЦПС

 

К основным характеристикам всех ЦПС следует отнести, прежде всего, информационную пропускную способность сети, топологию организации сети (шина, кольцо, дерево), физическую организацию (витая пара, оптоволокно, радиоканал и т.д.), максимальное количество подключаемых устройств в сегменте и в целом по сети, максимальную длину сегмента сети без повторителей, и максимальную длину сети с повторителями. Следует отметить, что полевые шины, предназначены, прежде всего, для организации связи между датчиками и контроллерами имеют максимальную длину сегмента равную примерно 200 м, а в целом обеспечивают передачу данных без передачи энергии питания на расстояния до 13 км. Также при выборе той или иной сети передачи данных, следует руководствоваться не только затратами на инсталляцию системы, но и затратами на модернизацию сети в том числе и кабельного хозяйства.

Кабельное хозяйство сетей на основе витой пары является наиболее легко инсталлируемым, а также меньше подвержено какой либо модернизации, из-за того, что такие ЦПС наиболее приспособлены к зашумленной электромагнитными помехами среде передачи данных и энергии. В настоящее время принцип одновременной передачи данных и энергии применятся в следующих ЦПС: AS-interface (AS-i); EIB (InstaBus); Foundation Field Bus H1 и H2; HART; InterBus (InterBus Loop); LONWorks (с трансмиттерами LPT); Profibus PA; WorldFIP.

Кратко рассмотрим некоторые характеристики этих ЦПС в таблице 3.1. Из таблицы видно, что каждый интерфейс имеет свои достоинства и недостатки. Что-то больше подходит для передачи больших объемов информации без гарантии доставки данных в определенное время, а другая же шина позволяет передавать малый объем данных, но за достаточно малое время.

 

 

 

 

3.3. AS-interface

 

AS-интерфейс, или AS-i (Actuators/Sensors interface – интерфейс исполнительных устройств и датчиков) является открытой промышленной сетью нижнего уровня систем автоматизации, которая предназначена для организации связи с исполнительными устройствами. Основные концепции AS-интерфейса регламентированы европейскими нормативами EN 50295, а также международным стандартом IEC 62026, базирующимися на спецификациях Международной ассоциации по AS-интерфейсу (AS International Association). При этом система на базе AS-интерфейса является открытой и независимой от изготовителя, то есть изготовители и пользователи получают возможность самостоятельно разрабатывать системные компоненты, совместимые с изделиями других производителей без дополнительных мер по конфигурированию, и обеспечивать их надежную коммуникацию в единой сети.

AS-интерфейс позволяет решить задачу подключения датчиков и приводов к системе управления на основе построения сети с использованием одного двухжильного кабеля, с помощью которого обеспечивается как питание всех сетевых устройств, так и опрос датчиков и выдача команд на исполнительные механизмы. Гибкость управления системой достигается за счёт применения различных ведущих устройств. Функции ведущих устройств могут выполнять программируемые логические контроллеры, промышленные компьютеры или модули связи с сетями более высокого уровня – ModBus, Interbus, CANopen, PROFIBUS, DeviceNet.

Локальная вычислительная система низкого уровня на базе AS-интерфейса может иметь только одно ведущее устройство (master). До недавнего времени к нему можно было подключить 31 ведомое устройство (slave). По новой спецификации версии 2.1 стандарта на AS-интерфейс, появившейся весной 2000 года, количество ведомых устройств в одной сети увеличено до 62 за счёт разделения адресного пространства ведущего сетевого устройства на две подобласти: А и В. В AS-интерфейсе более ранних версий каждое ведомое устройство могло иметь до 4 входов и 4 выходов. Так называемые A/B-устройства (устройства, адресуемые в соответствии со спецификацией версии 2.1) могут иметь до 4 входов и 3 выходов. AS-интерфейс использует метод доступа к ведомым устройствам, основанный на их циклическом опросе (polling). При опросе системы, состоящей из 31 ведомого устройства, время цикла составляет 4,7 мс.

 

 

Рис. 3.1. Схема подключения устройств к AS – интерфейсу

 

Таким образом, не позднее чем через каждые 5 мс каждый датчик или исполнительный механизм системы будет опрошен ведомым устройством. Если в AS-интерфейсе версии 2.1 используются только ведомые устройства подобласти адресного пространства А или В, то время цикла опроса также не превышает 5 мс. В случае использования всего адресного пространства, доступного для данной версии, ведомые устройства подобластей А и В обслуживаются по очереди: в первом цикле производится опрос ведомых устройств подобласти А, во втором – подобласти В, и в такой последовательности циклический процесс опроса повторяется далее. Таким образом, в этом случае суммарное время обслуживания всех ведомых устройств не превышает 10 мс. Обслуживание ведомых А/B-устройств способны выполнять только ведущие сетевые устройства, поддерживающие спецификацию версии 2.1. Устройства, не поддерживающие данную версию, способны обслуживать не более 31 ведомого устройства (подобласть адресного пространства А).

Топология сети AS-интерфейса очень проста и позволяет подключать ведомые устройства по схемам: шина, звезда, кольцо или дерево. Единственный пункт, который необходимо учитывать – это ограничение общей длины кабеля 100 м. Под общей длиной понимается сумма длин всех ветвей сегмента сети, обслуживаемого одним ведущим устройством. Специальный расширитель позволяет удлинить кабель или разделить ветвь на группы.

Если требуется большая длина кабеля, то можно использовать до двух повторителей, что обеспечит надежное соединение при суммарной протяжённости линий связи до 300 м. При этом необходимо учитывать, что каждый сегмент требует отдельного источника электропитания. Для сетевых устройств должны использоваться только специальные источники, предназначенные для работы с AS-интерфейсом. В связи со специальными требованиями к линии передачи информации (одновременная передача информации и электропитания для датчиков и исполнительных механизмов, использование неэкранированного кабеля и минимизация полосы частот) потребовалось разработать новый метод модуляции для AS-интерфейса. Этот метод модуляции для последовательной передачи данных получил название Alternating Puls Modulation.

Последовательность передаваемых битов сначала перекодируется в такую последовательность, в которой каждое изменение передаваемого сигнала приводит к фазовой инверсии (кодирование Манчестера). При этом происходит формирование тока передачи, который в линии AS-интерфейса благодаря имеющейся распределенной индуктивности создает дифференциальные уровни напряжения. Каждое увеличение тока передачи ведет к появлению отрицательного, а понижение – положительного импульса напряжения. На приёмной стороне AS-интерфейса эти сигналы напряжений детектируются и преобразуются в последовательность битов, соответствующую исходной.

 

 

3.4. Profibus PA

 

PROFIBUS-PA применяет расширенный PROFIBUS-DP-протокол передачи данных. Техника передачи согласно IEC 1158-2 обеспечивает надежность и питание полевых приборов через шину. Приборы PROFIBUS-PA могут благодаря применению специальных устройств (PROFIBUS-PA-Links) в простейшем случае интегрироваться в PROFIBUS-DP-сеть. В PROFIBUS-PA используется передающая техника по IEC 1158-2. Технология передачи предоставляет взрывозащищенность и питание устройств через шину. Она базируется на следующих основных принципах:

– у каждого сегмента только один источник питания;

– при передаче данных, питания не происходит;

– пассивная терминация линии с обоих концов основной шины и т.д.

Характеристика технологии передачи данных показана в табл.3.2.

 

Скорость передачи 31.25 кбит/сек
Безопасность данных Предусмотрен анализ ошибок
Кабель Двухжильная витая пара
Удаленное питание Через линии данных
Взрывозащита Может быть как с ней так и без
Топология Линия, дерево, комбинация
Количество станций До 32 на сегмент, макс. 126
Повторителя До 4

 

Технология передачи PROFIBUS-PA предназначена для взрывоопасных помещений с обеспечением внутренней безопасности и поэтому работает, используя синхронный, низкоэнергетический метод передачи. Во взрывоопасных помещениях с обеспечением внутренней безопасности на одном сегменте PROFIBUS-PA могут работать до десяти абонентов, при условии, что общее потребление тока никогда не превышает 100 мА. В помещениях, не требующих обеспечения внутренней безопасности, на одном сегменте PROFIBUS-PA могут работать до 30 абонентов. Используемая скорость передачи равна тогда 31,25 Кбит/с.

 

 

3.5. Интерфейс RS-485

 

Интерфейс RS-485 (другое название - EIA/TIA-485) - один из наиболее распространенных стандартов физического уровня связи. Физический уровень – это канал связи и способ передачи сигнала. Сеть, построенная на интерфейсе RS-485, представляет собой приемопередатчики, соединенные при помощи витой пары – двух скрученных проводов. В основе интерфейса RS-485 лежит принцип дифференциальной (балансной) передачи данных.

Суть его заключается в передаче одного сигнала по двум проводам. Причем по одному проводу (условно A) идет оригинальный сигнал, а по другому (условно B) – его инверсная копия. Другими словами, если на одном проводе "1", то на другом "0" и наоборот. Таким образом, между двумя проводами витой пары всегда есть разность потенциалов: при "1" она положительна, при "0" - отрицательна. Именно этой разностью потенциалов и передается сигнал. Такой способ передачи обеспечивает высокую устойчивость к синфазной помехе. Синфазной называют помеху, действующую на оба провода линии одинаково. К примеру, электромагнитная волна, проходя через участок линии связи, наводит в обоих проводах потенциал. Если сигнал передается потенциалом в одном проводе относительно общего, как в RS-232, то наводка на этот провод может исказить сигнал относительно хорошо поглощающего наводки общего ("земли"). Кроме того, на сопротивлении длинного общего провода будет падать разность потенциалов земель – дополнительный источник искажений. А при дифференциальной передаче искажения не происходит. В самом деле, если два провода пролегают близко друг к другу, да еще перевиты, то наводка на оба провода одинакова. Потенциал в обоих одинаково нагруженных проводах изменяется одинаково, при этом информативная разность потенциалов остается без изменений.

Аппаратная реализация интерфейса – микросхемы приемопередатчиков с дифференциальными входами/выходами (к линии) и цифровыми портами (к портам UART контроллера). Существуют два варианта такого интерфейса: RS-422 и RS-485. RS-422 - полнодуплексный интерфейс. Прием и передача идут по двум отдельным парам проводов. На каждой паре проводов может быть только по одному передатчику. RS-485 – полудуплексный интерфейс. Прием и передача идут по одной паре проводов с разделением по времени. В сети может быть много передатчиков, так как они могут отключаться в режиме приема.

 

Рис. 3.2 – Интерфейсы RS-422 (а), RS-485 (б)

 

D (driver) - передатчик; R (receiver) - приемник; DI (driver input) - цифровой вход передатчика; RO (receiver output) - цифровой выход приемника; DE (driver enable) - разрешение работы передатчика; RE (receiver enable) - разрешение работы приемника; A - прямой дифференциальный вход/выход; B - инверсный дифференциальный вход/выход; Y - прямой дифференциальный выход (RS-422); Z - инверсный дифференциальный выход (RS-422).

Все устройства подключаются к одной витой паре одинаково: прямые выходы (A) к одному проводу, инверсные (B) – к другому. Входное сопротивление приемника со стороны линии (RAB) обычно составляет 12 КОм. Так как мощность передатчика не беспредельна, это создает ограничение на количество приемников, подключенных к линии. Согласно спецификации RS-485 c учетом согласующих резисторов передатчик может вести до 32 приемников. Однако есть ряд микросхем с повышенным входным сопротивлением, что позволяет подключить к линии значительно больше 32 устройств. Максимальная скорость связи по спецификации RS-485 может достигать 10 МБит/сек. Максимальное расстояние – 1200 м. Если необходимо организовать связь на расстоянии большем 1200 м или подключить больше устройств, чем допускает нагрузочная способность передатчика – применяют специальные повторители (репитеры).

 

Характеристики интерфейсов RS-422 и RS-485 представлены в таблице 2.11.

 

Стандартные параметры интерфейсов RS-422 RS-485
Допустимое число передатчиков / приемников 1 / 10 32 / 32
Максимальная длина кабеля 1200 м 1200 м
Максимальная скорость связи 10 Мбит/с 10 Мбит/с
Диапазон напряжений "1" передатчика +2...+10 В +1.5...+6 В
Диапазон напряжений "0" передатчика -2...-10 В -1.5...-6 В
Допустимое сопротивление нагрузки передатчика 100 Ом 54 Ом
Входное сопротивление приемника 4 кОм 12 кОм
Максимальное время нарастания сигнала передатчика 10% бита 30% бита

 

На физическом уровне линия связи готова к работе, однако, нужен еще и протокол – договоренность между устройствами системы о формате посылок. По природе интерфейса RS-485 устройства не могут передавать одновременно – будет конфликт передатчиков. Следовательно, требуется распределить между устройствами право на передачу. Отсюда основное деление: централизованный (одномастерный) обмен и децентрализованный (многомастерный).

В централизованной сети одно устройство всегда ведущее (мастер). Оно генерирует запросы и команды остальным (ведомым) устройствам. Ведомые устройства могут передавать только по команде ведущего. Как правило, обмен между ведомыми идет только через ведущего, хотя для ускорения обмена можно организовать передачу данных от одного ведомого к другому по команде ведущего.

В децентрализованной сети роль ведущего может передаваться от устройству к устройству либо по некоторому алгоритму очередности, либо по команде текущего ведущего к следующему (передача маркера ведущего). При этом ведомое устройство может в своем ответе ведущему передать запрос на переход в режим ведущего и ожидать разрешения или запрета.

Последовательный канал по меркам контроллера – штука медленная. На скорости 9600 бод передача одного символа занимает больше миллисекунды. Поэтому, когда контроллер плотно загружен вычислениями и не должен их останавливать на время обмена по UART, нужно использовать прерывания по завершению приема и передачи символа. Можно выделить место в памяти для формирования посылки на передачу и сохранения принятой посылки (буфер посылки), а также указатели на позицию текущего символа. Прерывания по завершению приема или передачи символа вызывают соответствующие подпрограммы, которые передают или сохраняют очередной символ со сдвигом указателя и проверкой признака конца сообщения, после чего возвращают управление основной программе до следующего прерывания. По завершению отправки или приема всей посылки либо формируется пользовательский флаг, отрабатываемый в основном цикле программы, либо сразу вызывается подпрограмма обработки сообщения. В общем случае посылка по последовательному каналу состоит из управляющих байтов (синхронизация посылки, адресов отправителя и получателя, контрольной суммы и пр.) и собственно байтов данных.

Протоколов существует множество и можно придумать еще больше, но лучше пользоваться наиболее употребительными из них. Одним из стандартных протоколов последовательной передачи является MODBUS, его поддержку обеспечивают многие производители промышленных контроллеров.

Для повышения надежности связи обязательно нужно предусмотреть программные методы борьбы со сбоями. Их можно условно разделить на две группы: защита от рассинхронизации и контроль достоверности.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...