V. Проектирование систем и виды технологического процесса обслуживания на предприятиях питания
Основы проектирования сооружений и процессы гидравлики
Гидра́влика (др.-греч. ὑδραυλικός — водяной; от ὕδωρ — вода + αὐλός — трубка) — прикладная наука о законах движения (см. гидродинамика капельных жидкостей и газов), равновесии жидкостей (см. гидростатика) и способах приложения этих законов к решению задач инженерной практики[1]. В отличие от гидромеханики, гидравлика характеризуется особым подходом к изучению явлений течения жидкостей: она устанавливает приближённые зависимости, ограничиваясь во многих случаях рассмотрением одноразмерного движения, широко используя при этом эксперимент, как в лабораторных, так и в натурных условиях. Наряду с этим намечается всё большее сближение между гидромеханикой и гидравликой: с одной стороны, гидромеханика всё чаще обращается к эксперименту, с другой — методы гидравлического анализа становятся более строгими[2]. История Акведук в Сеговии Некоторые принципы гидростатики были установлены ещё Архимедом, возникновение гидродинамики также относится к античному периоду, однако формирование гидравлики как науки начинается с середины XV века, когда Леонардо да Винчи лабораторными опытами положил начало экспериментальному методу в гидравлике. В XVI—XVII веках С. Стевин, Г. Галилей и Б. Паскаль разработали основы гидростатики как науки, а Э. Торричелли дал известную формулу для скорости жидкости, вытекающей из отверстия. В дальнейшем И. Ньютон высказал основные положения о внутреннем трении в жидкостях. В XVIII веке Д. Бернулли и Л. Эйлер разработали общие уравнения движения идеальной жидкости, послужившие основой для дальнейшего развития гидромеханики и гидравлики.
Однако применение этих уравнений (так же как и предложенных несколько позже уравнений движения вязкой жидкости) для решения практических задач привело к удовлетворительным результатам лишь в немногих случаях, в связи с этим с конца XVIII века многие учёные и инженеры (А. Шези, А. Дарси, А. Базен, Ю. Вейсбах и др.) опытным путём изучали движение воды в различных частных случаях, в результате чего наука обогатилась значительным числом эмпирических формул. Практическая гидравлика всё более отдалялась от теоретической гидродинамики. Сближение между ними наметилось лишь к концу XIX века в результате формирования новых взглядов на движение жидкости, основанных на исследовании структуры потока. Особо заслуживают упоминания работы О. Рейнольдса, позволившие глубже проникнуть в сложный процесс течения реальной жидкости и в физическую природу гидравлических сопротивлений и положившие начало учению о турбулентном движении. Впоследствии это учение, благодаря исследованиям Л. Прандтля и Т. Кармана, завершилось созданием полуэмпирических теорий турбулентности, получивших широкое практическое применение. К этому же периоду относятся исследования Н. Е. Жуковского, из которых для гидравлики наибольшее значение имели работы о гидравлическом ударе и о движении грунтовых вод. В XX веке быстрый рост гидротехники, теплоэнергетики, гидромашиностроения, а также авиационной техники привёл к интенсивному развитию гидравлики, которое характеризуется синтезом теоретических и экспериментальных методов. Большой вклад в развитие науки сделали советские учёные — Н. Н. Павловский, Л. С. Лейбензон, М. А. Великанова и др. Практическое значение гидравлики возросло в связи с потребностями современной техники в решении вопросов транспортирования жидкостей и газов различного назначения и использования их для разнообразных целей. Если ранее в гидравлике изучалась лишь одна жидкость — вода, то в современных условиях всё большее внимание уделяется изучению закономерностей движения вязких жидкостей (нефти и её продуктов), газов, неоднородных и т. н. неньютоновских жидкостей. Меняются и методы исследования и решения гидравлических задач. Сравнительно недавно в гидравлике основное место отводилось чисто эмпирическим зависимостям, справедливым только для воды и часто лишь в узких пределах изменения скоростей, температур, геометрических параметров потока; теперь всё большее значение приобретают закономерности общего порядка, действительные для всех жидкостей, отвечающие требованиям теории подобия и пр. При этом отдельные случаи могут рассматриваться как следствие обобщенных закономерностей. Постепенно гидравлика превращается в один из прикладных разделов общей науки о движении жидкостей — механики жидкости.
Раздел механики, в котором изучаются равновесие и движение жидкостей, а также взаимодействие между жидкостью и обтекаемыми ею поверхностями или телами, называется «механика жидкости», или «гидромеханика». Термин «жидкость» в гидромеханике обладает более широким значением, чем это принято в современном русском языке. В понятие «жидкость» включают физические тела, обладающие текучестью, то есть способностью изменять свою форму под воздействием сколь угодно малых сил. Поэтому под этим термином подразумеваются не только обычные (капельные) жидкости, но и газы. Несмотря на их различие, законы движения капельных жидкостей и газов при определенных условиях можно считать одинаковыми. Основным из этих условий является небольшое значение скорости движения по сравнению со скоростью звука. Одним из прикладных разделов гидромеханики является гидравлика, которая решает определенный круг технических задач и вопросов. Прикладной характер этого раздела подчеркивает само слово «гидравлика», которое образовано из греческих слов hydor — вода и aulos — трубка. Поэтому гидравлика рассматривается как наука о законах равновесия и движения жидкостей и о способах приложения этих законов для решения практических задач.
Гидравлика изучает в первую очередь течения жидкостей в различных руслах, т.е. потоки, ограниченные стенками. В понятие «русло» мы будем включать все устройства, ограничивающие поток, в том числе трубопроводы, проточные части насосов, зазоры и другие элементы гидравлических систем. Таким образом, в гидравлике изучаются в основном внутренние течения и решаются «внутренние» задачи. Внешние течения, связанные с обтеканием движущихся тел воздушной или жидкой средой, рассматриваются в аэрогидромеханике, которая в настоящее время получила также значительное развитие в связи с потребностями авиации, авто- и судостроения. Аэрогидромеханика, являющаяся весьма обширной областью исследований и практического применения, не менее важна, однако в данном учебном пособии она не рассматривается. Современная гидравлика является результатом развития двух методов исследования и решения технических задач. Первый из этих методов — теоретический, основанный на использовании законов механики. Развитие его привело к созданию математического описания практически всех основных процессов, происходящих в движущейся жидкости. Однако использование этих математических моделей не всегда позволяет решать практические задачи. Это связано, с одной стороны, со сложностью используемых математических зависимостей, а с другой стороны, — с необходимостью учета влияния большого числа конструктивных факторов. Второй метод — экспериментальный, учитывающий практическую деятельность людей, в результате которой накоплен значительный опыт по созданию гидравлических систем. Современные способы решения прикладных задач, применяемые в гидравлике, представляют собой комбинацию отмеченных методов. Суть их заключается в следующем: сначала исследуемое явление упрощается (вводятся разумные допущения), а затем к нему применяют теоретические методы гидромеханики и на их основе получают расчетные формулы. По формулам проводят необходимые вычисления, и полученные результаты сравнивают с опытными данными. На основе сравнения расчетные зависимости рекомендуют к применению на практике или вносят в них необходимые коррективы. Таким образом, методы, применяемые в гидравлике, являются сочетанием аналитических и экспериментальных способов исследования.
Воспользуйтесь поиском по сайту: ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|