Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Тригонометрическая и показательная форма комплексного числа.




ОДОБРЕНО

Цикловой методической комиссией

общеобразовательных и естественнонаучных

дисциплин:

Протокол № ___

от «____» _________________ 2016 г.

Председатель ЦМК:

_____________ Криницына Н.А.

 

 

Краткий курс лекций

«МАТЕМАТИКА»

 

для специальностей:

26.02.06 «Эксплуатация судового электрооборудования и средств автоматики»

23.02.03 «Техническое обслуживание и ремонт автомобильного транспорта»

23.02.01 «Организация перевозок и управление на транспорте (по видам)»

26.02.05 «Эксплуатация судовых энергетических установок»

26.02.03 «Судовождение»

 

 

Преподаватель:

Абраменкова В.П..

 

 

Пермь

2016 г.

 

ЦЕЛЬ, ПРЕДМЕТ И ЗАДАЧИ ДИСЦИПЛИНЫ

 

«Математика» является основной дисциплиной цикла математических и естественнонаучных дисциплин.

Цели изучения дисциплины состоят в овладении студентами:

· базовыми знаниями в области математики как основы фундаментальных знаний;

· навыками решения задач;

· навыками самостоятельной работы с математической литературой.

Целью изучения также является формирование научного мировоззрения студентов.

Предмет дисциплины составляют основные понятия, определения, теоремы разделов математики и методы решения задач.

Задачи дисциплины состоят в обучении студентов:

· основным понятиям, определениям и теоремам разделов математики;

· умениям использовать полученные знания при решении задач и изучении общенаучных дисциплин и дисциплин специальности;

· умениям использовать систему знаний дисциплины для адекватного математического моделирования различных, в том числе экономических, процессов.

 

ТРЕБОВАНИЯ К УРОВНЮ ОСВОЕНИЯ ДИСЦИПЛИНЫ

В результате изучения дисциплины «Математика» студент должен:

а) иметь представление об основах:линейной алгебры; аналитической геометрии на плоскости и в пространстве; анализа бесконечно малых величин; дифференциального исчисления функций одной переменной; дифференциального исчисления функции нескольких переменных; интегрального исчисления функции одной и нескольких переменных; дифференциальных уравнений; теории рядов; теории вероятностей и математической статистики.

б) знать: основные понятия, теоремы, методы и правила решения типовых задач изучаемых разделов математики.

в) уметь: применять математические методы к решению теоретических и практических задач; применять полученные знания для решения задач общенаучных и специальных дисциплин.

г) приобрести навыки в решении задач и оценки полученных результатов.

д) владеть, иметь опыт использования необходимых вычислительных средств, таблиц и справочников при производстве расчётов.

Тезисы лекций

 

Понятие комплексного числа

Комплексное число имеет вид , где и – действительные числа,

мнимая единица,

Число называется действительной частью ( ) комплексного числа , число называется мнимой частью ( ) комплексного числа .

Геометрическая интерпретация комплексного числа.

. Комплексные числа изображаются на комплексной плоскости:

Комплексная плоскость состоит из двух осей:
– действительная ось
– мнимая ось

Алгебраическая форма комплексного числа.
Сложение, вычитание, умножение и деление комплексных чисел.

Алгебраическая форма комплексного числа имеет вид .

1.Сложение комплексных чисел. и

2. Вычитание комплексных чисел.

3. Умножение комплексных чисел. ·

Деление комплексных чисел.

Тригонометрическая и показательная форма комплексного числа.

Любое комплексное число (кроме нуля) можно записать в тригонометрической форме: , где – это модуль комплексного числа, а аргумент комплексного числа. Изобразим на комплексной плоскости число . Для определённости и простоты объяснений расположим его в первой координатной четверти.

Модулем комплексного числа называется расстояние от начала координат до соответствующей точки комплексной плоскости. Попросту говоря, модуль – это длина радиус-вектора, который на чертеже обозначен красным цветом.

Модуль комплексного числа z стандартно обозначают: или r

По теореме Пифагора модуль комплексного числа равен: .

Примечание: модуль комплексного числа представляет собой обобщение понятия модуля действительного числа, как расстояния от точки до начала координат.

Аргументом комплексного числа называетсяугол между положительной полуосью действительной оси и радиус-вектором, проведенным из начала координат к соответствующей точке. Аргумент не определён для единственного числа: .

Аргумент комплексного числа стандартно обозначают: , где .

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...