Отношения между объемами понятий
Если мы попытаемся сравнить между собой объемы различных понятий, то сразу же заметим, что у од них понятий объемы большие, у других - поменьше, что объем одного понятия может включаться в объем другого понятия и т.п. Однако сначала мы обнаружим, что некоторые понятия вообще невозможно сравнивать с этой точки зрения - настолько далеки они друг от друга по своему содержанию Ну как, в самом деле, сравнивать г снятия “оперная ария” и “дерево”, “время года” и “бифштекс”?! Такие понятия, в содержаниях которых нет ничего общего, называются несравнимыми. Сравнимыми называют понятия, содержания которых имеют общие элементы, т.е. имеются какие-то свойства, черты, признаки, которые входят в содержание как одного, так и другого понятия. В дальнейшем мы будем говорить только о сравнимых понятиях. Совместимыми называются понятия, объемы которых имеют общие элементы, т.е. существуют предметы, которые включаются в объем как одного, так и другого понятия. Будем изображать объемы понятий в виде кругов, в центре которых стоит буква, представляющая некоторое понятие, например, объем понятия А (скажем, “слон”) будет выглядеть так:
Этот кружок включает в себя всех слонов, живущих на Земле. Тогда с помощью этих кругов мы можем представить следующие отношения между совместимыми понятиями:
Пересечение Объемы двух понятий А и В имеют общую часть -это те студенты, которые одновременно занимаются спортом, и те спортсмены, которые учатся в вузе. В то же время есть студенты, не занимающиеся спортом, и спортсмены, которые не являются студентами.
Подчинение Объем понятия В полностью включается в объем понятия А, например, объем понятия “дуб” полностью включается в объем понятия “дерево”. Иногда отношение подчинения называют “родо-видовым”
отношением: более широкое по объему понятие /А называют “родом”, а понятие В называют “видом”.
Тождество Объемы понятий А и В совпадают, т.е. это одна и та же совокупность предметов, отображаемая -с точки зрения разных существенных свойств двумя понятиями, например: “первый космонавт” и “Ю.А. Гагарин”, “квадрат” и “равноугольный ромб”, “храбрый” и “смелый”.
Несовместимыми называются понятия, объемы который не имеют общих элементов, т.е. нет предметов, которые одновременно включались бы как в объем одного, так и в объем другого понятия. Существует три разных отношения между объемами таких понятий.
Соподчинение Объемы понятий А и В полностью различны, но они все-таки сравнимы, т.е. имеют в своих со-держаниях какие-то общие черты. Именно это мы и имеем в виду, когда помещаем их в объем третьего, более широкого понятия С, видами которого являются наши несовместимые понятия. Например, понятие А - “дуб”, понятие В - “береза”. Эти понятия не имеют общих элементов, нет предмета, который одновременно был бы и дубом и березой, однако и дубы, и березы включаются в объем более широкого понятия “дерево”(С).
Противоположность Выше нам было безразлично, как именно располагаются наши дубы и березы в объеме понятия “дерево”. Но иногда это имеет значение, ибо предметы, входящие в объемы сравниваемых понятий, стремятся как можно дальше отодвинуться друг от друга, как бы тяготеют к разным полюсам в объеме третьего родового понятия. Например, “богатые” — “бедные”, “трусливые” - “храбрые”, “здоровые” — “больные” и т.п. Такие понятия называются “противоположными”. Противоречие Два сравниваемых понятия не просто тяготеют к разным полюсам в объеме третьего понятия, но вместе полностью исчерпывают объем этого третьего понятия, например, “богатый” - “небогатый”, “здоровый” — “нездоровый” и т.п. Такие понятия называются “противоречащими” друг другу. При выражении противоречащих понятий в языке одно из них содержит, как правило, отрицательную частицу: “неумелый”, “невежливый”, “невысокий” и т.п. Отличить противоположность от противоречия нетрудно: противоположные понятия оставляют между своими объемами некоторую “прокладку”, т.е. те предметы, которые не включаются ни в первое, ни во второе понятие; противоречащие понятия полностью исчерпывают объем третьего, более широкого понятия.
Порой бывает полезно с помощью этих простых схем наглядно представить себе отношения между объемами тех или иных понятий. В каком, например, отношении находятся следующие понятия: А - врач, В— хирург, С- женщина. Берем первую пару понятий. Каково отношение между врачами и хирургами? Пересечение? Нет, ибо тогда часть хирургов окажется вне круга врачей. А что это за хирурги, которые не являются врачами? Бандиты! Все хирурги должны войти в число врачей. Тогда между объемами этих понятий должно быть отношение подчинения: все хирурги врачи, но не все врачи — хирурги. Теперь можно приняться за женщин. Могут женщины быть хирургами? Могут. Могут женщины быть врачами других специальностей - терапевтами, отоларингологами, психиатрами? Могут. А могут ли они быть просто женщинами, не врачами? Еще как могут! Тогда круг женщин пересекаем с обоими кругами:
Рисование кружков кажется детским занятием. Однако оно полезно в том отношении, что заставляет нас задуматься над содержанием даже хорошо известных нам понятий. Смысл, содержание многих слов мы схватываем довольно поверхностно, поэтому плохо представляем себе, к каким объектам они относятся. Пытаясь точно представить отношения между объемами понятий, мы гораздо яснее и глубже начинаем понимать их содержание. Попробуйте изобразить отношения между объемами очень хорошо известных вам понятий: 5) мать -дочь - бабушка -женщина, и вы убедитесь, как мало мы вдумываемся в значения этих слов!
Пора немного подумать! Многие из вас помнят детскую задачку о волке, козе и капусте, которых нужно было по очереди перевезти на другой берег реки и при этом не допустить, чтобы коза съела капусту, а волк сожрал козу. Она представляет собой упрощенный вариант довольно старой задачи, имеющей множество сложных вариантов. Вот один из них. 6) На берег реки приехали 3 рыцаря, каждый со своей дамой. У берега реки стоит лодка, способная вместить не более двух человек. Как с помощью этой лодки рыцарям и их дамам переправиться на другой берег, если должно быть выполнено условие: ни одна дама не может оказаться в обществе других рыцарей, если рядом с ней нет ее собственного рыцаря? Лошади переплывают реку сами, дамы способны грести веслами не хуже рыцарей, в лодку входят и из нее выходят по одному, лодка может пересекать реку сколь -ко угодно раз, обратно лодку кто-то должен пригнать и т.п. Не выдумывайте ситуаций, когда кто-то прыгает из лодки на берег, а с берега другой прыгает в лодку и оказывается, что оба парят в воздухе! Попробуйте найти хотя бы один способ переправы.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|