Абсолютные и относительные погрешности
Стр 1 из 3Следующая ⇒ ПОГРЕШНОСТИ ВЫЧИСЛЕНИЙ НА ЭВМ Цель работы: изучение влияния различных видов погрешностей на результаты вычислений на ЭВМ; разработка программ на языке высокого уровня для учета различных видов погрешностей. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ Источники и виды погрешностей результата Вычислительной задачи При решении задачи на ЭВМ практически невозможно получить точное решение. Получаемое численное решение почти всегда содержит погрешность, т.е. является приближенным. Погрешности решения задач на ЭВМ объясняются следующими причинами: 1) математическая модель задачи является приближенным описанием реального объекта или процесса. Поэтому получаемые результаты также всегда будут приближенными, а их погрешности зависят от степени адекватности моделей реальному объекту или процессу; 2) исходные данные при решении вычислительной задачи, как правило, содержат погрешности. Это объясняется тем, что исходные данные получают в результате экспериментов, наблюдений, измерений или в результате решения вспомогательных задач; 3) применяемые для решения вычислительных задач методы в большинстве случаев являются приближенными, так как получить аналитическое решение задачи обычно не удается; 4) использование ЭВМ вносит ошибки, которые появляются при вводе-выводе данных в процессе вычислений. С учетом указанных выше причин погрешность решения вычислительной задачи на ЭВМ складывается из трех составляющих: - неустранимая погрешность; - погрешность метода; - вычислительная погрешность. Неустранимая погрешность соответствует первым двум причинам и единственный способ уменьшить эту погрешность заключается в переходе к более точной модели или в использовании более точных входных данных.
Погрешность метода определяется третьей причиной, причем появление этой погрешности практически неизбежно при любых вычислениях. Вычислительная погрешность возникает в основном из-за округления чисел при вводе-выводе, а также при выполнении арифметических операций в ЭВМ. Это обусловлено ограниченной разрядностью ЭВМ и особенностями представления данных в памяти машины.2 Абсолютные и относительные погрешности Рассмотрим числовые характеристики погрешностей. Будем считать, что результат решения задачи на ЭВМ является приближенным числом. Пусть А – точное число, которое может быть и неизвестным. Тогда приближенным числом а будем называть такое число, которое незначительно отличается от точного А и заменяет его в вычислениях. При этом говорят, что число а является приближением числа А, что обозначается как А ≈ а. Например, пусть π - точное число. Тогда различные приближения можно задать следующим образом: π ≈ π1 = 3.14; π ≈ π2 = 3.1416; π ≈ π3 = 3.141593. Разность А - а между точным числом А и его приближением а называется погрешностью или ошибкой приближенного числа а. Поскольку возможно, что а > А или а < А вводится понятие абсолютной погрешности приближенного числа, которая обозначается как Δ а = ∣ А - а ∣. Возможны два случая вычисления абсолютной погрешности: 1) когда точное число известно, например 3000 0.333 1 ; 0.333; 1 X = 1 x = Δ x = − = 2) если точное число не известно, то для оценки погрешности приближе- ния используется понятие предельной абсолютной погрешности: Δ a ≥ A − a или Δ a ≥ Δ a. Если предельная абсолютная погрешность задана, то ее значение позво- ляет установить границы в которых находится точное число А: a − Δ a ≤ A ≤ a + Δ a или A = a ± Δ a. Очевидно, что значение абсолютной погрешности приближенного числа
не позволяет оценить степень его приближения к точному значению. Для этого используют понятие относительной погрешности приближенного числа, кото- рая вычисляется следующим образом: , ≠ 0 Δ δ = A A a a. Из этой формулы видно, что величина δ a может быть вычислена только при известном значении точного числа А. Если точное значение числа не из- вестно, то используется понятие предельной относительной погрешности δ a ≥ δ a. В практике вычислений величина δ a определяется по формуле a a a Δ δ =. Полагают, что эта формула применима, если δ a <<1, В частности, счита- ется нормальным, если δ a = 0.1 или, что то же самое, δ a =10%. В грубых рас- четах допускается δ a = 20%. Иногда требуется, чтобы δ a <1%.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|