Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Высота, биссектриса, медиана треугольника (определения).

Билет №1

Виды треугольников по длине сторон. Периметр треугольника.

Треугольники бывают:

Равнобедренный (равны две стороны), разносторонний (все стороны по величине разные), равносторонний -все стороны равны Периметром треуг называется сумма длин его сторон)

Смежные углы (определение). Теорема о сумме смежных углов.

Смежными называются два угла, у которых одна сторона общая, а две другие являются дополнительными лучами (т.е. имеют общее начало и дополняют друг друга до прямой).

Сумма смежных углов равна 180°.

Дано: ∠АОВ и ∠ВОС смежные.

Доказать: ∠АОВ + ∠ВОС = 180°

Доказательство:

∠АОС = ∠АОВ + ∠ВОС по свойству измерения углов,

∠АОС = 180°, так как является развернутым, ⇒ ∠АОВ + ∠ВОС = 180°

3. Задача по теме "Признаки равенства треугольников".

 Отрезки AC и BD пересекаются в точке О. AO=OC, BO=OD. При проведении отрезков AB и CD образуются треугольники BAO и OCD. Докажите, что ∆ BAO=∆ OCD.

Билет №2

Отрезок (определение). Середина отрезка. Основное свойство расположение точек на прямой.

Отрезок - это часть прямой, которая ограничена двумя точками, т.е. она имеет начало и конец, а значит можно измерить её длину.
Середина отрезка - это точка на заданном отрезке, находящаяся на равном расстоянии от обоих его концов отрезка.

 из трёх точек на прямой одна и только одна лежит между двумя другими.

Свойства равнобедренного треугольника (доказательство одного из них).

Свойства равнобедренного треугольника:

1. В равнобедренном треугольнике углы при основании равны.

Доказательство:

пусть АВС - равнобедренный треуг с основанием АВ. Докажем, что у него А= В.

Тр САВ равен тр СВА по первому признаку равенства треугДействительно, СА=СВ, СВ=СА, угол С= углу С.Из равенства треугольников следует, что угол А= углу В. Теорема доказана.

2 В равнобедренном треуг биссектриса, проведённая к основанию, является медианной и высотой.

Доказательство:

Рассмотрим треугольники ACF и BCF (важно правильно их назвать!)

 

1) AC=BC (по условию (как боковые стороны равнобедренного треугольника))

2) ∠ACF=∠BCF (так как CF — биссектриса по условию).

3) сторона CF — общая.

 

Значит, ∆ ACF=∆ BCF (по двум сторонам и углу между ними).

Из равенства треугольников следует равенство соответствующих сторон и углов.

Таким образом, AF=BF, следовательно, CF — медиана.

∠AFC=∠BFC. А так как эти углы — смежные, значит, они прямые: ∠AFC=∠BFC=90º.

Значит, CF — высота.

Что и требовалось доказать.

  3. Задача по теме "Окружность и ее элементы".

Найдите длину радиуса окружности, если длина диаметра равна 14,5 см.

 

 

Билет № 3

Основные геометрические фигуры на плоскости. Основное свойство принадлежности точек и прямых.

Основными геометрическими фигурами на плоскости являются точка и прямая. Какова бы ни была прямая, существуют точки, принадлежащие этой прямой, и точки, не принадлежащие ей. Через любые две точки можно провести прямую, и только одну.

Построение треугольника по трём сторонам.

Даны три отрезка: a,b иc, равные сторонам искомого треугольника..

В этом случае перед началом построения необходимо убедиться, исполняется ли неравенство треугольника (длина каждого отрезка меньше суммы длин двух остальных отрезков), и эти отрезки могут быть сторонами треугольника.

Если да, то:,

1. Провести прямую.

2. На прямой от выбранной точки A отложить отрезок, равный данному отрезку a, и отметить другой конец отрезка B.

3. Провести окружность с центром A и радиусом, равным отрезку b.

4. Провести окружность с центром B и радиусом, равным отрезку c.

5. Точка пересечения окружностей является третьей вершиной искомого треугольника.

3. Задача по теме "Вертикальные углы".

Один из вертикальных углов равен 45º. Найдите остальные углы.

Билет № 4

Высота, биссектриса, медиана треугольника (определения).

Медиана - это отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

Биссектриса - это отрезок, делящий угол треугольника на две равные части.

Высота треугольника - это перпендикуляр, опущенный из любой вершины треугольника на противоположную сторону, или на ее продолжение.

2. Теорема о свойстве катета, лежащего против угла в 30º.

Так как сумма острых углов прямоугольного треугольника равна 90º, то∠B=90º-∠A=90º-30º=60º.Построим треугольник ADC, равный треугольнику ABC.В нем ∠D=∠B=60º и ∠CAD=∠CAB=30º (по построению).Отсюда, ∠BAD=∠CAD+∠CAB=60º.Следовательно, в треугольнике ABD все углы равны:∠BAD=∠D=∠B=60º.Значит, треугольник ABC — равносторонний, и все его стороны равны: AB=AD=BD.BC=DC (по построению), поэтому Что и требовалось доказать.

3. Задача по теме " Признаки параллельности прямых".

Один из внутренних накрест лежащих углов, образованных при пересечении двух параллельных прямых третьей прямой, равен 50º. Найдите градусные меры остальных углов.

Билет № 5

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...